

Leakage Components

Gate 0 $I_7 I_8$ Source Drain 0-Ð I_2 I_3 I_6 I_5 p-well I_{4} Well Q Courtesy of IEEE Press, New York. © 2000

Leakage Components (250nm)

- pn junction reverse bias current 1.
- 2. Weak inversion
- 3. Drain-induced barrier lowering (DIBL)
 - Gate-induced drain leakage (GIDL)
- 5. Punchthrough

4.

- Narrow width effect 6.
- Gate oxide tunneling 7.
- 8 Hot carrier injection

1E-7		
1E-7 1E-8	weak inversion + p-njunction + DIBL + GIDL ($@V_D = 3.9V$ weak inversion + p-n junction + DIBL ($@V_D = 2.7V$ weak inversion + p-n junction (80 mV/dec & $V_D = 0.1V$)	
1E-9		
1E-10		
1E-10- 1E-11		
1E-12		
1E-12 1E-13	p-njunction	
	F) Current in Amps	 Nopunchthrough No width effect No gate leakage

Leakage Components

- Drain-induced barrier lowering (DIBL)
 - Voltage at the drain lowers the source potential barrier
 - Lowers V_{Th} , no change on S
- Gate-induced drain leakage (GIDL)
 - High field between gate and drain increases injection of carriers into substrate -> leakage (band-to-band leakage)

MOS Capacitances

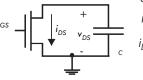
• Non-linear channel capacitance

• Linear overlap, fringing capacitances

• Non-linear drain diffusion capacitance

• Miller effect on overlap, fringing capacitance

• Gate capacitance


• PN junction • Wiring capacitances

• Linear

2.H Transistor C-V

MOS Transistor as a Switch

Discharging a capacitor

· Can solve: $i_{DS} = i_{DS} (v_{DS})$ $i_{DS} = C (v_{DS}) \frac{dv_{DS}}{dt}$

 Prefer using equivalent resistances $t_{pHL} = \int \frac{C(v_{DS}) \mathrm{d}v_{DS}}{i_{DS} \left(v_{GS}, v_{DS} \right)}$ Find t_{pHL}
Find equivalent C, R

Gate and Drain Capacitances

Gate capacitance

Gate Capacitances

Gate Capacitances

- Gate capacitance is non-linear
 - First order approximation with $C_{ox}WL$ ($C_{ox}L = 2fF/\mu m$)
- Need to find the actual equivalent capacitance by simulating it
- Since this is a linear approximation of non-linear function, it is valid only over the certain range
- Different capacitances for HL, LH transitions and power computation
- Drain capacitance non-linearity compensates • But this changes with fanout

MOS Transistor as a Switch (EECS251A)

 $\approx \frac{1}{2}(R_{on}(t_1) + R_{on}(t_2))$

2.1 Delay Revisited

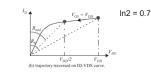
MOS Transistor as a Switch (EE241A)

Solving the integral:

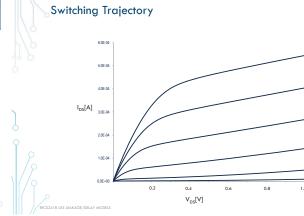
$$R_{eq} = \frac{1}{-V_{DD}/2} \int_{V_{DD}}^{V_{DD}/2} \frac{V}{I_{DSAT}(1+\lambda V)} dV \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{7}{9} \lambda V_{DD}\right)$$

with appropriately calculated I_{dsat}

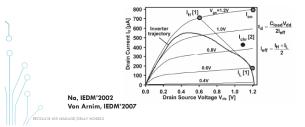
Averaging resistances:

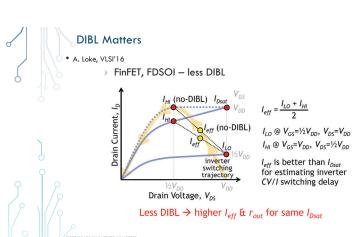

$$R_{eq} = \frac{1}{2} \left(\frac{V_{DD}}{I_{DSAT}(1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT}(1 + \lambda V_{DD}/2)} \right) = \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{5}{6} \lambda V_{DD} \right)$$

Propagation delay: $t_{pHL} = (\ln 2)R_{eqn}C_L$ $t_{pLH} = (\ln 2)R_{eqp}C_L$

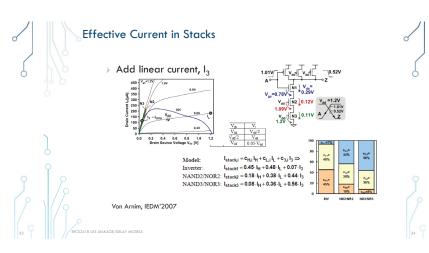

 $= \operatorname{average}_{t = t_1 \dots t_2} (R_{on}(t)) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} R_{on}(t) dt = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \frac{V_{DS}(t)}{I_D(t)} dt$

Traversed path


 V_{DD}






• $I_{on}(V_{DD})$ is never reached

- Define $I_{eff} = (I_H + I_L)/2$
- $I_{L} = I_{DS}(V_{GS} = V_{DD}/2, V_{DS} = V_{DD}); I_{H} = I_{DS}(V_{GS} = V_{DD}, V_{DS} = V_{DD}/2),$

• Standard Cells

ECS2418 LOS LEMARCH/DELAY MODELS

35 9

d