

ASAP7 Standard Cells

Cell architecture 7.5 M2 track height Provides good gear ratio with fin, poly, and M2 pitch

ASAP7 Standard Cells

Cell architecture

- 7.5 M2 track height
- Provides good gear ratio with fin, poly, and M2 pitch Adjacent NAND3 and inverter FEOL and MOL show the double diffusion break (DDB)
- Drawing is not WSYWIG-the fins extend to 1/2 the gate horizontally past drawn active

ASAP7 Standard Cells

Provides good gear ratio with fin, poly, and M2 pitch
 Adjacent NAND3 and inverter

FEOL and MOL show the double

horizontally past drawn active

Design rules check for connectivity

Cell architecture

- 7.5 M2 track height

diffusion break (DDB) Drawing is not WSYWIG-the

fins extend to $\frac{1}{2}$ the gate

DDB needed since the 32 nm

node, depending on foundry

Fin (pre-cut) Cell Boundary

Gate (pre-cut)

Fin (post-cut)

Fin (excised)

Active (drawn Active (actual

ASAP7 Standard Cells

Cell architecture

- 7.5 M2 track height Provides good gear ratio with fin, poly, and M2 pitch
 Adjacent NAND3 and inverter
 FEOL and MOL show the double
- diffusion break (DDB) Drawing is not WSYWIG—the
- fins extend to ½ the gate horizontally past drawn active
- DDB needed since the 32 nm node, depending on foundry Design rules check for connectivity

ASAP7 Standard Cells

Cell architecture

2418 LO6 STANDARD CELLS

- 7.5 M2 track height Provides good gear ratio with fin, poly, and M2 pitch
- **Adjacent NAND3 and inverter** FEOL and MOL show the double diffusion break (DDB)
- Drawing is not WSYWIG-the fins extend to 1/2 the gate
- horizontally past drawn active
- DDB needed since the 32 nm node, depending on foundry
- Design rules check for connectivity

Cell

real

📃 Fin (p

Fin (excised)

Active (drav Active (actu block mask)

ASAP7 Standard Cells

- **Cell** architecture
 - 7.5 M2 track height
 - Provides good gear ratio with fin, poly, and M2 pitch
 Adjacent NAND3 and inverter
 - FEOL and MOL show the double diffusion break (DDB) Drawing is not WSYWIG-the
 - fins extend to 1/2 the gate horizontally past drawn active
- DDB needed since the 32 nm node, depending on foundry Design rules check for connectivity

ASAP7 Standard Cells

Cell architecture

- 7.5 M2 track height Provides good gear ratio with fin, poly, and M2 pitch
- Adjacent NAND3 and inverter FEOL and MOL show the double diffusion break (DDB)
- Drawing is not WSYWIG—the fins extend to ½ the gate horizontally past drawn active

DDB needed since the 32 nm node, depending on foundry Design rules check for connectivity

 \square Gate (post-cut) Fin (post-cut) Fin (excised) Active (draw Active (actua block mask) LISD Cell Boundary 🗌 LIG

Cell Boundary

ffusion eak

ASAP7 Standard Cells

Cell architecture

- 7.5 M2 track height
- Provides good gear ratio with fin, poly, and M2 pitch Adjacent NAND3 and inverter FEOL and MOL show the double
- diffusion break (DDB) Drawing is not WSYWIG—the fins extend to ½ the gate
- horizontally past drawn active

DDB needed since the 32 nm node, depending on foundry **Design rules check for connectivity**

Gate (po Fin (post-cut) Fin (excised) Active (drawn) Active (actual fir block mask) LISD

Cell

LIG

ASAP7 Standard Cells

Cell architecture

- 7.5 M2 track height Provides good gear rate fin, poly, and M2 pitch ar ratio with
- Adjacent NAND3 and inverter FEOL and MOL show the double diffusion break (DDB) Drawing is not WSYWIG—the
- fins extend to ½ the gate horizontally past drawn active

DDB needed since the 32 nm node, depending on foundry

Design rules check for connectivity

ASAP7 Standard Cells

Cell architecture

- 7.5 M2 track height Provides good gear ratio with fin, poly, and M2 pitch
- Adjacent NAND3 and inverter FEOL and MOL show the double diffusion break (DDB)
- Drawing is not WSYWIG-the
- fins extend to 1/2 the gate horizontally past drawn active

DDB needed since the 32 nm node, depending on foundry **Design rules check for connectivity**

ASAP7 Standard Cells

- **Cell** architecture - 7.5 M2 track height
- Provides good gear ratio with fin, poly, and M2 pitch
 Adjacent NAND3 and inverter
- FEOL and MOL show the double diffusion break (DDB)
- Drawing is not WSYWIG—the fins extend to ½ the gate horizontally past drawn active
- DDB needed since the 32 nm node, depending on foundry Design rules check for connectivity

ASAP7 Latch M LIG VO V1 Activ

This demonstrates

- a crossover Note single diffusion breaks (SBDs)
- **Horizontal M2 can** only support limited
- tracks Intel, Samsung support SDBs (no DDBs) at N10/N7 [EETimes]

EE241B Technology

- ASAP7 7nm predictive technology kit
- Also available Synopsys 32/28nm Generic Library
- Multi-vth Standard Cell Library 45 IO pads
- SRAMs
- Design rule manual

Design Kit Components

• Physical views

- Layout and schematic, with abstractions
- Netlist
- Logical view
 - Test view
- Timing, power and noise views
- Documentation

2.K Class Design Flow

Servers to Use

Please use the instructional servers

- Labs may not be up to date on BWRC machines
- Servers to use:
 - c152m-{1-15}.eecs.berkeley.edu
 - eda-{1-8}.eecs.berkeley.edu
- Other servers may be missing tools / may be using a different version!
- EECS instructional website is helpful!
 - <u>http://inst.eecs.berkeley.edu/~inst/iesglabs.html</u>

Text Editors/Other commands and tools

Learn to use vim

- gvim, emacs are some alternatives
- You will not be sorry!
- Gedit can cause some issues

• Use tmux

- Other unix commands
 - ls, cd, cp, rm, mkdir, tar, grep, ...
 - Life skills!

Setting up your environment

- Can work in home directory for basic things
- Move to /scratch/ (local to each machine) for running the labs
 - Make your own directory here to work in
- Follow the directions in the lab

Clone the lab

- Tools are configured as submodules
 - Run git submodule update -init -recursive to initialize the submodules
- Need to source sourceme.sh every time you reinitialize
- Sets up some Hammer variables
 - Sources course .bashrc

git

- Version control
- Another important "learn to use"
- Shouldn't need much advanced use for this class but it is a lifeskill!
- git clone
 - Initialize
- git submodule update -init -recursive
 - Initialize all submodules
 - Only need to run once in this context

Getting Started: Logging in

- From terminal:
 - ssh –Y <username>@<server>
 - Instructional account login
- From Windows:
 - Can use putty
 - Linux subsystem
- Can also you x2go to connect to a remote desktop

Instructional Tools and Technology

- Most tools can be found in /share/instww/{cadence or synopsys}
- ASAP7 technology new for this semester
 - Open predictive PDK
 - Can be found in ~ee241/spring20-labs/
- Lab requires you to look at technology (and maybe some tool manuals)
 - They can usually be found in a docs/ folder in the tool directory.

Lab Preview

Update for this semester

- Converted to use Hammer and ASAP7
- Please post on Piazza and come to office hours if you run into issues
- Baseline overview of a portion of the VLSI flow
 - Simulation, synthesis, P&R
 - Looking at log files, reports, etc. to understand the design and tools
 - It's about telling the tools what it wants to hear

• What's missing?

- Discussed in the summary
- DRC, LVS, more advanced power analysis, much more!
- Pay attention to lecture and think about how you can integrate into the flow

• Manuals are your friend!

Lab Preview (continued)

• Hammer

- <u>https://github.com/ucb-bar/hammer</u>
- Python framework for physical design
- Separation of concerns to enable reuse
- What are these hammer-cadence-plugins and hammer-synopsys-plugins?
 - Tool specific implementations of APIs
 - Not publicly available so do not share!
- So where's the technology plugin?
 - hammer/src/hammer-vlsi/technology/asap7/

• ASAP7

• Take a look at the files!

Next Lecture

- Library characterization
- Static timing

