

Outline

Module 2

• Technology variability

2.N Static Timing

Static Timing Analysis

• Computing critical (longest) and shortest path delay

- Longest path algorithm on DAG [Kirkpatrick, IBM Jo. R&D, 1966]
- Used in most ASIC designs today
- Limitations
 - False paths
 - Simultaneous arrival times
 - Derate

False Paths

Inside Carry Bypass Adder - 1

Longest graphical/topological path runs along carry chain from stage to stage Longest path analysis would identify red path as critical

Static Timing - Summary

- Enables design of complex systems
- Simpler, less accurate models are used during design
- More accurate models are used for 'signoff'
- See more in labs!

2.0 Design Variability Sources and Impact on Design

Variability Classification

• Nature of process variability

- Within-die (WID), Die-to-die (D2D), Wafer-to-wafer (W2W), Lot-to-lot (L2L)
 - Systematic vs. random
 - Correlated vs. non-correlated

• Spatial variability/correlation

- Device parameters (CD, t_{ox}, ...)
- Supply voltage, temperature

• Temporal variability/correlation

 Within-node scaling, Electromigration, Hot-electron effect, NBTI, self-heating, temperature, SOI history effect, supply voltage, crosstalk
[Bernstein, IBM J. R&D, July/Sept 2006]

• Known vs. unknown

- Goal of model-to-hw correlation is to reduce the unknowns
- EECS2418 L08 TECHNOLOGY VARIABILITY

Sources of Variability

Technology

- Front-end (Devices)
 - Systematic and random variations in Ion, Ioff, C, ...
- Back-end (Interconnect)
 - Systematic and random variations in R, C

Environment

- Supply (IR drop, noise)
- Temperature

Temporal Variability

	Technology			Environment				
Te	Tech. node scaling Within-node scaling				Temperature Data stream			
	Electromigration				SOI history effect			
	NBTI				Self heating			
	Hot carrier			effect	fect Supply noise			noise
After Rohrer ISSCC'06 tu	After Rohrer ISSCC'06 tutorial		Tooling Lot-	changes -to-lot	5	Coupling Charge		
◆ 10 ¹²	10 ⁹	10 ⁶	10 ³ Tem	10 ⁰ poral rar	10 ⁻³ nge [s]	10-6	10 ⁻⁹	10 ⁻¹²

Systematic and Random Device Variations

Parameter	Random	Systematic			
Channel Dopant Concentration Nch	Affects 6 _{VT} ^[1]	Non uniformity in the process of dopant implantation, dosage, diffusion			
Gate Oxide Thickness Tox	Si/SiO ₂ & SiO ₂ /Poly-Si interface roughness ^[2]	Non uniformity in the process of oxide growth			
Threshold Voltage V _T (non Nch related)	Random anneal temperature and strain effects	Non-uniform annealing temperature ^[5] (metal coverage over gate) Biaxial strain			
Mobility µ	Random strain distributions	Systematic variation of strain in the Si due to STI, S/D area, contacts, gate density, etc			
Gate Length L	Line edge roughness (LER) ^[3]	Lithography and etching: Proximity effects, orientation ^[4]			
Fin geometry/ film thickness variations	Rounding, etc, 6 _{VT} , mobility.	Systematic fin thickness Systematic Si film/BOX variations			

EECS2418 108 T[5] P. Oldiges et al, SISPAD 2000, Sept. 2000. [4] M. Orshansky et al, IEEE Trans on CAD, May 2002. [5] Tuinhout et al, IEDM, Dec 1996

Systematic vs. Random Variations

Systematic

- A systematic pattern can be traced down to lot-to-lot, wafer-to-wafer, within reticle, within die, from layout to layout,...
- Within-die: usually spatially correlated

• Random

- Random mismatch (dopant fluctuations, line edge roughness,...)
- Things that are systematic, but e.g. change with a very short time constant (for us to do anything about it). Or we don't unedrstand it well enough to model it as systematic. Or we don't know it in advance ("How random is a coin toss?").

• Unknown

∆**Vth (mV)** Tega *et. al,* VLSI Tech. 09