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Companies Hold 53% of Global Wafer Capacity

An increasing percentage of 

the world’s capacity is getting 

concentrated in the hands of 

the largest producers.
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Announcements

• Project abstracts due today, by e-mail
• Teams of 2

• Title

• One paragraph

• 5 relevant references

• Can also combine with CS252 or EE290 projects

• Quiz 1 on Tuesday, Feb 25, in class

• Office hour moved to 11am on Monday
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Outline

• ISSCC recap

• Module 2
• Technology variability

• Module 3
• Flip-flop timing
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2.P Design Variability
Some Random Effects
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Negative Bias Temperature Instability

• PFET VTh’s shift in time, at high negative bias and elevated temperatures

• The mechanism is thought to be the breaking of hydrogen-silicon bonds at the 
Si/SiO2 interface, creating surface traps and injecting positive hydrogen-related 
species into the oxide.

• Also other charge trapping and hot-carrier defect generation

• Systematic + random shifts

Tsujikawa, IRPS’2003
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Random Telegraph Signal (RTS)

• Trapping of a carrier in oxide traps modulates Vth or Ids

• τe and τc are random and follow exponential distributions

Single Hole Trap Multiple Hole Trap

N. Tega et al, IRPS 2008.
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RTS and Technology Scaling

• RTS exceeds RDF at 3 sigma with 20nm gates

Tega et. al, VLSI Tech. 09 

L/W = 20/45nm
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3. Design for Performance

3.A Flip-Flop Timing
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Flip-Flop Parameters
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Latch Parameters
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Delays can be different for rising and falling data transitions

Unger and Tan
Trans. on Comp.
10/86
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EXAMPLE CLOCK SYSTEM

Courtesy of IEEE Press, New York.   2000
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Clock Nonidealities

• Clock skew
• Spatial variation in temporally equivalent clock edges; deterministic + random, tSK

• Clock jitter
• Temporal variations in consecutive edges of the clock signal; modulation + random noise

• Cycle-to-cycle (short-term) - tJS
• Long-term - tJL

• Variation of the pulse width 
• for level-sensitive clocking
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Clock Skew and Jitter

• Both skew and jitter affect the effective cycle time

• Only skew affects the race margin, if jitter is from the source
• Distribution-induced jitter affects both

Clk1

Clk2

tSK

tJS
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Clock Uncertainties

2

4
3

Power Supply

Interconnect

5 Temperature

6 Capacitive Load

7 Coupling to Adjacent Lines

1 Clock Generation

Devices

Sources of clock uncertainty
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Clock Constraints in Edge-Triggered Systems

Courtesy of IEEE Press, New York.   2000EECS241B L09 FLIP-FLOP TIMING 28



3.B Timing with 
Uncertainty/Variations
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Pictorial View of Setup and Hold Tests

0 or more
switching(s)
allowed

Latest clock arrival time Earliest clock arrival time
(next cycle)

Data must be stable

Hold time

Early RAT

Data must be stable

Setup time

Late RAT

Actual early AT Actual late AT

Early
slack

Late
slack
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LF CF

Hold test

Handling of Across-Chip Variation

• Each gate has a range of delay: [lb, ub]
• The lower bound is used for early timing
• The upper bound is used for late timing

• This is called an early/late split

• Static timing obtains bounds on timing slacks
• Timing is performed as one forward pass and one backward pass

LF CF

Setup test

Capturing early path

Launching late path

Capturing late path

Launching early path
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How is the Early/Late Split Computed?

• The best way is to take known effects into account during characterization of library cells
• History effect, simultaneous switching, pre-charging of internal nodes, etc.
• This drives separate characterization for early and late; this is the most accurate method

• Failing that, the most common method is derating factors
• Example: Late delay = library delay * 1.05

Early delay = library delay * 0.95
• The IBM way of achieving derating is LCD factors (Linear Combination of Delay) (FC=fast 

chip, SC=slow chip, see next page)
• Late delay = L * FC_delay + L * NOM_delay + L * SC_delay

Early delay = E * FC_delay + E * NOM_delay + E * SC_delay
• Across-chip variation is therefore assumed to be a fixed proportion of chip-to-chip 

variation for each cell type
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IBM Delay Modeling*

Intrinsic:
Chip means

Systematic
ACV

Random
ACV

Early Late Early Late

*P. S. Zuchowski, ICCAD’04

At a given corner
late delay = intrinsic + systematic + random
early delay = intrinsic – systematic – random
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Traditional Timing Corners
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The Problem with an Early/Late Split

• The early/late split is very useful
• Allows bounds during delay modeling
• Any unknown or hard-to-model effect can be swept under the rug of an 

early/late split
• But, it has problems

• Additional pessimism (which may be desirable)
• Unnecessary pessimism (which is never desirable)

LF CF

Setup test

Capturing early path

Launching late path

This physically common
portion can’t be both fast
and slow at the same time
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How to Have Less Pessimism?

• Common path pessimism removal

• Account for correlations

• Credit for statistical averaging of random
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Statistical Timing

• Deterministic

• Statistical
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Statistical Max Operation

*C. E. Clark, “The greatest of a finite set of random variables,” OR Journal, March-April 1961, pp. 145—162
**M. Cain, “The moment-generating function of the minimum of bivariate normal random variables,” American Statistician, May ’94, 48(2)
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Unified View of Correlations

Independently
random part

Spatially correlated part:
within-chip distance-
related correlation

Globally correlated part: chip-to-
chip, wafer-to-wafer, batch-to-
batch variation
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Spatial Correlation vs. Early/Late Split

LF1 LF2 CFLF3

early clock
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Dependence on common virtual variables cancels out at the timing test
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Next Lecture

• Latch-based timing

• Flip-flops

EECS241B L09 FLIP-FLOP TIMING 41


