inst.eecs.berkeley.edu/~ee241b

EE241B : Advanced Digital Circuits

Lecture 9 – Timing **Borivoje Nikolić**

February 14, 2020, EETimes: Five Chip **Companies Hold 53% of Global Wafer Capacity**

An increasing percentage of the world's capacity is getting concentrated in the hands of the largest producers.

Worlwide Wafer Capacity Leaders

(Monthly installed capacity in Dec 2013, 200min-equivalents)								
2019 Rank	2018 Rank	Company	Headquarters Region	Dec-2018 Capacity (K w/m)	Dec-2019 Capacity (K w/m)	Yr/Yr Change	Share of Worldwide Total	Inclusion or Exclusion of Capacity Shares from JV Fabs
1	1	Samsung	South Korea	2,934	2,935	0%	15.0%	
2	2	TSMC	Taiwan	2,439	2,505	3%	12.8%	shares of SSMC & VIS
3	3	Micron	North America	1,685	1,841	9%	9.4%	share of IM Flash in '18
4	4	SK Hynix	South Korea	1,630	1,743	7%	8.9%	
5	5	Kioxia/WD	Japan	1,361	1,406	3%	7.2%	

Source: Companies, IC Insights' Global Wafer Capacity 2020-2024 Report

(Monthly Installed Canacity in Dec 2019, 200mm-equivalents)

Announcements

- Project abstracts due today, by e-mail
 - Teams of 2
 - Title
 - One paragraph
 - 5 relevant references
- Can also combine with CS252 or EE290 projects
- Quiz 1 on Tuesday, Feb 25, in class
- Office hour moved to 11am on Monday

Outline

- ISSCC recap
- Module 2
 - Technology variability
- Module 3
 - Flip-flop timing

2.P Design Variability Some Random Effects

Negative Bias Temperature Instability

- PFET V_{Th} 's shift in time, at high negative bias and elevated temperatures
- The mechanism is thought to be the breaking of hydrogen-silicon bonds at the Si/SiO2 interface, creating surface traps and injecting positive hydrogen-related species into the oxide.
- Also other charge trapping and hot-carrier defect generation

Random Telegraph Signal (RTS)

• Trapping of a carrier in oxide traps modulates V_{th} or I_{ds}

• τ_e and τ_c are random and follow exponential distributions

EECS241B LONLITERA et al, IRPS 2008.

Multiple states

RTS and Technology Scaling

• RTS exceeds RDF at 3 sigma with 20nm gates

∆Vth (mV)

Tega et. al, VLSI Tech. 09

3. Design for Performance3.A Flip-Flop Timing

Delays can be different for rising and falling data transitions

Delays can be different for rising and falling data transitions

- CATING (2-3 Levels) TUDD Unit 1 Restu(De-skew 9 Unit 3

Clock Nonidealities

- Clock skew
 - Spatial variation in temporally equivalent clock edges; deterministic + random, t_{SK}
- Clock jitter
 - Temporal variations in consecutive edges of the clock signal; modulation + random noise
 - Cycle-to-cycle (short-term) t_{JS}
 - Long-term t_{\parallel}
- Variation of the pulse width
 - for level-sensitive clocking

Clock Skew and Jitter

- Both skew and jitter affect the effective cycle time
- Only skew affects the race margin, if jitter is from the source
 - Distribution-induced jitter affects both

Clock Constraints in Edge-Triggered Systems

