
GCD: VLSI’s Hello World

EE241B Tutorial
Updated by Daniel Grubb (2020)

Based on work by Yunsup Lee (2010), Brian Zimmer (2011, 2013),
Angie Wang (2017), Sean Huang (2019)

Overview

For this tutorial, you will become familiar with the VLSI tools you will use throughout this semester
and learn how a design “flows” through the toolflow. Specifically, given an RTL model of a simple
greatest common divisor (GCD) circuit, you will synthesize and place and route the design and
simulate it. We will be using Hammer, a Berkeley-developed VLSI flow framework, as our main
flow driver, but you will also get to touch the tools directly and see how a flow is run in other
cases. The main goal of this lab is to give you an overview of a typical VLSI flow, to identify what
is important for the designer to analyze, and to introduce a few practical aspects that a new VLSI
designer may not have experienced before.

VLSI Toolflow Introduction

Figure 1 shows an overview of a Synopsys-tool-based VLSI toolflow. In this lab, you will use
Synopsys VCS (vcs) to simulate and debug your RTL design. We will then be using primarily
Cadence tools to run through the actual VLSI flow. You will use Cadence Genus to synthesize
the design. Synthesis is the process of transforming an RTL model into a gate-level netlist. After
obtaining a working gate-level netlist, you will use Cadence Innovus to place and route the design.
Placement is the process by which each standard cell is positioned on the chip, while routing
involves wiring the cells together using various metal layers. The tools will provide feedback on
the performance and area of your design after both synthesis and place and route. The results
from place and route are more realistic but require much more time to generate. Cadence Voltus
can then take these outputs and give more accurate estimated power measurements and can help
validate your supply network.

Prerequisites

As you can easy tell from the diagram, many different tools are needed to take even a simple design
from RTL all the way to transistor-level implementation. Each tool is immensely complicated, and
many engineers in industry specialize in only one. In order to produce a VLSI design in a single
semester we will need to understand a little about every one.

Each tool has a GUI interface, but .tcl scripts are typically used as the primary means of driving
the tool. When you use the GUI, in the terminal window you will see the textual equivalent of each
click, and these commands can be added to scripts. In this lab, we will use Hammer which creates
an abstraction on top of this which allows the user to create generalized APIs for the physical
design flow. More information on Hammer is provided below. You will have the opportunity to
interact with the tools directly, from the GUI and the command line, as well as through Hammer.

EE241B Tutorial, GCD: VLSI’s Hello World, Spring 2019 2

Verilog
Source
(RTL)

VCS Design Compiler

IC Compiler (DP)

IC Compiler (P&R)

Constraints
File

Constraints

Std.
Cell

Library

RTL
Sim Results

Gate
Level
Netlist

Timing
Area

Delay
File

TLU+
Files

Floor
Plan

Constraints
File

Gate
Level
Netlist

Timing
Area Layout Parasitics

File
Delay
File

VCS

Post
Syn
Sim

Results

VCS

Post P&R
Sim Results

PrimeTime

Switching
activity

Power
Estimates

Figure 1: Synopsys VLSI Toolflow

EE241B Tutorial, GCD: VLSI’s Hello World, Spring 2019 3

Getting Started

All of the EE241B laboratory assignments should be completed on an EECS Instructional machines.
Please see the course website and follow all of the instructions for setting up your computing
resources. Remember, you will need to source a setup script in order for these instructions to work.
This bash script contains the location of each tool’s binary, and also sets up important environment
variables. Make sure you have followed class setup instructions before starting (these are posted
on the website).

Use the c125m-{1-16} or eda-{1-8}.eecs.berkeley.edu machines for these labs.

As these tools generate lots of data and home directories have too low of a disk quota, we will need
to use the local disk of one of the available. Assuming your username is userA (change this to your
own username), you can create your personal git directory using the following command.

% cd /scratch/

% mkdir userA

To begin the lab you will need to make use of a provided lab harness. This lab harness provides
makefiles, scripts, and the Verilog test harness required to complete the tutorial. The following
commands grab these files from the class repository. To simplify the rest of the lab we will also
define a ’$LABROOT’ environment variable which contains the absolute path to the project’s
top-level root directory. If you’re not using bash shell, you can switch to it by typing bash.

% bash

% cd /scratch/userA

% git clone ~ee241/spring20-labs/ee241bS20

% cd ee241bS20

% git submodule update --init --recursive (only needed once)

% source sourceme.sh

Every time you want to start the tools, you must source the sourceme in the lab directory. This
will setup the environment needed for the lab tools to run.

Note: scratch/ is a local drive, so if you every need to do work on another machine, you will need
to rsync files between machines.

The resulting $LABROOT directory contains a src/ subdirectory which contains the verilog source
code for the GCD design we will be pushing through the flow. There are 3 Hammer related
submodules in the directory (hammer, hammer-cadence-plugins, and hammer-synopsys-plugins).
Note that you need to be given access to the hammer-cadence-plugins and hammer-synopsys-plugins
repos, since they are private. DO NOT PUBLISH THESE PUBLICLY. CLONE THEM ON THE
INSTRUCTIONAL MACHINES ONLY.

RTL:

• src/gcdGCDUnit rtl.v - RTL implementation of gcdGCDUnit

• src/gcdGCDUnitCtrl.v - Control part of the RTL implementation

• src/gcdGCDUnitDpath.v - Datapath part of the RTL implementation

• src/gcdTestHarness rtl.v - Test harness for the RTL model

EE241B Tutorial, GCD: VLSI’s Hello World, Spring 2019 4

The block diagram is shown in Figure 2. Your module is named gcdGCDUnit and has the interface
shown in Figure 3. We have provided you with a test harness that will drive the inputs and check
the outputs of your design.

gcdGCDUnit

 gcdTestHarness

operands_bits_A

operands_bits_B

operands_val

operands_rdy

result_bits_data

result_rdy

result_val clk

reset

Figure 2: Block diagram for GCD Test Harness

module gcdGCDUnit#(parameter W = 16)

(

input clk, reset,

input [W-1:0] operands_bits_A, // Operand A

input [W-1:0] operands_bits_B, // Operand B

input operands_val, // Are operands valid?

output operands_rdy, // ready to take operands

output [W-1:0] result_bits_data, // GCD

output result_val, // Is the result valid?

input result_rdy // ready to take the result

);

Figure 3: Interface for the GCD module

EE241B Tutorial, GCD: VLSI’s Hello World, Spring 2019 5

Technology: ASAP7

The technology we will be using this semester is ASAP7. It is an open (free to download for
academic institutions) predictive 7nm FinFET PDK developed at Arizona State University. This
means that you would not be able to actually tapeout a chip in this technology, but since it is open,
you can get experience working in a simulated advanced node without dealing with any pesky
NDAs from a real foundry.

There are some quirks with this technology. We have created some scripts that will take the
PDK and hack it (through a set of Python utilities) to make it more realistic and fully featured.
Furthermore, even though the technology is listed as 7nm, it has a 4x scale factor so that the VLSI
tools do not require any special licenses for running at such an advanced technology node. That
means that the scripts we provide you will do more automatic hacking of your design to scale it
correctly at the end.

The technology is extracted at ˜ee241/spring20-labs/asap7PDK r1p5 and asap7libs 24.
These directories contain all of the technology files needed by a VLSI flow. In particular, look
through some of the files in the asap7libs 24 directory. Contained here are the LIBs (Liberty Tim-
ing File; contains timing information for cell delays, transitions, setup/hold times), LEFs (Library
Exchange Format; contains info about physical dimensions, pin locations, metal layers, blockages),
and verilog models (used in simulation) for all of the standard cells. The tools require all of this
design collateral in order to place and time your design correctly. Furthermore, pretty much all
real chips also include analog components or other physical macros. To integrate these blocks into
your digital top flow, you need to supply the tools with all of these different files which come from
characterizing the blocks in question. You will learn more about some of these formats and the
different models used in lecture.

Take a closer look at ˜ee241/spring20-labs/asap7libs 24/techlef misc/asap7 tech 4x 170803.lef.
This file is called the tech lef and it specifies the physical properties of the technology itself. It spec-
ifies the layers of the design and spacing design rules for each metal (as described in lecture, there
are physical manufacturing limits, for instance on how close metal can be put next to each other).
The tools will use this info to make your design as DRC (Design Rules Checker) clean as possible.
If you have never looked at a tech lef before, scroll through it and see what is in it. You do not need
to understand all of it now, but a key part of VLSI design is being able to process the information
supplied by the technology and the tools. Answer the following questions from the techlef (a good
reference is located here: /share/instsww/cadence/INNOVUS181/doc/lefdefref/lefdefref.pdf):

1. Q: How many layers are specified in the ASAP7 technology?

2. Q: What are the unit standard cell dimensions? (hint: take a look at the SITE
entry)

3. Q: What is the preferred routing direction on metal layer 5?

4. Q: On metal 8, if there are two wires that are 0.8 um wide and run parallel to
each other for 5 um, what is the minimum spacing between the two wires?

This was just a quick intro to ASAP7 and looking at technologies in general. When running through
the rest of the lab, think about which tools require which information and how it is used.

http://asap.asu.edu/asap/

EE241B Tutorial, GCD: VLSI’s Hello World, Spring 2019 6

Pushing the design through all the VLSI Tools

You will now go through the entire tool flow and inspect the results after each step.

Hammer Crash Course

As briefly mentioned before, Hammer is a Python-based framework for physical design generators.
One of the core driving ideas is the separation of concerns. All portions of the VLSI flow require in-
formation specific to the design, the technology used, and the CAD tools used. Hammer is designed
to be a single backend that exposes a set of APIs that are then implemented in a design, technology,
and tool specific way by different ”plugins” supplied to it. We have a set of plugins developed for
some Cadence (Genus, Innovus), Synopsys (VCS), and Mentor (DRC/LVS) tools. The Hammer
ASAP7 plugin is located at hammer/src/hammer-vlsi/technology/asap7/. Hammer enables
reuse across projects by enforcing this separation of concerns and allows for the creation of more
powerful APIs which let the designer express their design more powerfully.

As these flows can be complicated, there will always be special cases that don’t fit specifically into
what Hammer has exposed to the user. So Hammer is design to be very flexible and configurable
such that the designer can override any default steps in the flow and add new ones.

A Hammer call looks like this (first one is a general call):

% hammer-vlsi step -e env.yml -p input.yml --obj_dir build

% hammer-vlsi synthesis -e env.yml -p input.yml --obj_dir build

hammer-vlsi is the Hammer driver program (hammer-vlsi is the default one, but you can write
a driver that extends the provided base class to insert custom steps into your flow). step is flow
step that you want to run (eg. synthesis/syn, place-and-route/par, drc, lvs, etc.). -e env.yml
is including env.yml as an environment config. -p input.yml is including input.yml as a design
input. obj dir build is specifying that the outputs should be placed in a subdirectory called build.

Hammer inputs are specified as keys in defined namespaces in yml and/or json files. A list of
default Hammer keys can be found in hammer/src/hammer-vlsi/defaults.yml, and the inputs
specific to this lab can be found in inst-env.yml and gcd.yml.

Here is a link to the Hammer documentation if you want to know more about it.

In this lab, we have supplied you with a Makefile which sets up the commands for you (Hammer
even emits a Make include file to help with this). You will primarily execute the Make commands,
but you can easily see which Hammer command is actually being run.

As mentioned before, at the end of the day, Hammer emits TCL to drive the tools, the same as
any other flow. You will examine the TCL that Hammer emits to let you see behind the scenes
and also interact with the GUI. Hopefully, this lab will give you some perspective on why such a
tool was created, even though important features, like support for bottom-up hierarchical design,
are outside the scope of this lab.

https://hammer-vlsi.readthedocs.io/en/latest/index.html

EE241B Tutorial, GCD: VLSI’s Hello World, Spring 2019 7

Synopsys VCS: Simulating your Verilog

VCS compiles source Verilog into a cycle-accurate executable for simulation. VCS can compile
Verilog expressed behaviorally, at the RTL level, or as structural verilog (a netlist). Behavioral
Verilog cannot be synthesized and should only be used in testbenches. RTL-level Verilog expresses
behavior as combinational and sequential logic at a higher level. Structural-level Verilog expresses
behavior as specific gates wired together. You will start with simulating the GCD module RTL
(before it is synthesized).

% make rtl-sim

hammer-vlsi sim -e env.yml -p gcd.yml -p sim_config.yml -p rtl_sim_config.yml

./simv +verbose=1

...

+ Running Test Case: gcdGCDUnit_rtl

[passed] Test (vcTestSink) succeeded, [0003 == 0003]

[passed] Test (vcTestSink) succeeded, [0007 == 0007]

[passed] Test (vcTestSink) succeeded, [0005 == 0005]

[passed] Test (vcTestSink) succeeded, [0001 == 0001]

[passed] Test (vcTestSink) succeeded, [0028 == 0028]

[passed] Test (vcTestSink) succeeded, [000a == 000a]

[passed] Test (vcTestSink) succeeded, [0005 == 0005]

[passed] Test (vcTestSink) succeeded, [0000 == 0000]

[passed] Test (Is sink finished?) succeeded

...

All of the simulation outputs are placed into build/sim-rundir/. Where should you start if all of
your tests didn’t pass? The answer is debug your RTL using Discovery Visualization Environment
(DVE) GUI looking at the trace outputs. The simulator already logged the activity for every net
to the vcdplus.vpd file. DVE can read the vcdplus.vpd file and visualize the wave form.

% dve -vpd build/sim-rundir/vcdplus.vpd &

To add signals to the waveform window (see Figure 4) you can select them in the hierarchy window
and then right click to choose Add To Waves > New Wave View.

Cadence Genus: RTL to Gate-Level Netlist

Genus performs hardware synthesis. A synthesis tool takes an RTL hardware description and a
standard cell library as input and produces a gate-level netlist as an output. The resulting gate-level
netlist is a completely structural description with only standard cells at the leaves of the design.

gcd.yml is the main Hammer input config for this design. Take a look at some of the specified keys.
There is some setup info to specify the technology being used (asap7) and tool names and versions
(Innovus 18.1). There are some other important specifiers such as the power network and the clock
for the design.

Q: What is the clock frequency that is initially specified for the design?

Note that the clock uncertainty is also specified in the same Hammer key. Clock uncertainty is
included to add margin to design timing to account for certain clock non-idealities. This value can
be selected based off of knowledge of your clock source.

EE241B Tutorial, GCD: VLSI’s Hello World, Spring 2019 8

Figure 4: DVE Waveform Window

Now, run the following commands (the corresponding Hammer commands are displayed below the
make command you should run):

% make buildfile

// hammer-vlsi build -e env.yml -p gcd.yml --obj_dir build

% make syn

// hammer-vlsi syn -e env.yml -p gcd.yml --obj_dir build

The buildfile command makes Hammer generate a Make include file (build/hammer.d) which con-
tains all of the Make commands we will use for the rest of the lab. Running make syn actually
synthesizes the design. The results are place into build/syn-rundir/. At the beginning of the
Hammer output, you can see the default steps involved in our synthesis flow.

Go ahead and take a look at what Hammer produced. First look at build/syn-rundir/syn.tcl. This
contains the TCL produced by Hammer that is then passed to Genus.

In build/syn-rundir/reports/, there are various reports for the design. Take a look at:

build/syn-rundir/reports/final time 0P63V 100C.setup view.rpt

This report specifies the timing results of the design. It lists the critical path of the design first.
The critical path is the slowest logic between any two registers and is therefore the limiting factor
preventing you from decreasing the clock period constraint. Answer the following questions:

1. Q: What are the start and endpoints of the critical path?

2. Q: Does the design meet timing with the current clock frequency? If not, how
much negative slack is there?

EE241B Tutorial, GCD: VLSI’s Hello World, Spring 2019 9

3. Q: The nominal supply voltage for this technology is 0.7V. Why does the timing
report we care about specify 0.63V (0P63V), 100C (temperature), and setup view
in its name?

If any of your paths say (VIOLATED) instead of (MET), you need to modify gcd.yml to increase
the clock period. If you do not do this, your design will not function properly. Note also: if you
make your clock period too tight for a given design, the tools (synthesis and place and route) will
have trouble doing their jobs and the run time will increase!

After changing the clock frequency, re-run make syn and check the report again.

Q: Once your design passes timing, report the new clock period and how much positive
slack there is.

Additionally, you can get a sense of the synthesis results by looking at the other final *.rpt’s in
the reports directory. These contain information about area and power estimates, as well as a gate
mapping summary. These reports provide important feedback about the design which helps root
out problems before moving on to place-and-route.

Finally, you should also take a look at the synthesis log itself located at build/syn-rundir/genus.logx
(where x is the highest current number). The tool outputs a lot of information, including many
warnings, some benign, others not. Getting a sense of which parts of the log file are important to
pay attention to is an important part of managing your VLSI flow.

Cadence Innovus: Gate-Level Netlist to Layout

Innovus performs place and route. This tool takes a synthesized gate-level netlist and a standard
cell library as input and produces a layout as an output. There are many steps in the P&R process,
but here we will only focus on high level concepts. If you have further interest in the specifics and
how what you have learned in previous circuits classes actually gets implemented in the flow, you
can start by digging into the logs, Hammer steps, and by getting more hands-on experience!

Floorplanning is a critical part of the P&R process. Floorplanning, at a high level, involves setting
your boundaries, placing SRAMs and other macros, among other things. We have no macros in
this design, but you can see some of the floorplanning specifications in gcd.yml, such as the power
staps specification. In a real design, you will end up spending a considerable amount of time
floorplanning to get a design with good QOR, minimal DRC violations, and limited congestion.

Q: What are the initial dimensions of the P&R boundary, as specified in gcd.yml?
(hint: the values are given in microns)

Now, let’s run P&R. It’s pretty similar to our process for synthesis:

% make par

// hammer-vlsi par -e env.yml -p build/par-input.json --obj_dir build

A quick Hammer aside: before the Hammer par step is run, a Hammer transition step syn-to-par
is run which takes the json output of synthesis and automatically transforms it into the inputs for
P&R, par-input.json. This is one way in which Hammer is a VLSI flow tool. This is a common
pattern in Hammer in terms of transitioning between different steps (you can imagine Hammer as

EE241B Tutorial, GCD: VLSI’s Hello World, Spring 2019 10

a graph, with steps like syn and par as nodes, and the syn-to-par, etc. steps as the edges). You
can see this step in build/hammer.d.

After a few minutes, routing should have finished. Browse the results directory files in build/par-
rundir/ to see similar outputs as Genus. Look at par.tcl (there is also floorplan.tcl and mmmc.tcl)
to see some of the commands that Hammer output to run with Innovus. You can see that Hammer
creates an Innovus database after each Hammer step is run. This is done so that the designer can
edit one of these steps manually and then continue on with the rest of the automated flow with the
custom change. Just like Genus, this directory also contains innovus.logx. Again, there are a lot
of outputs in this log, but getting to know which warnings are important is critical to becoming an
effective designer.

Q: By looking at the Innovus log, did the design meet timing? How much slack is
there? (hint: search for ”opt design Final Summary”)

Q: By looking at the Innovus log, what is the design density? (hint: look in the same
place)

There are also some timing reports you may look at, from after certain steps in the flow, in
build/par-rundir/timingReports/.

Now open the GUI:

% cd $LABROOT/build/par-rundir/generated-scripts/

% ./open_chip

Figure 5 shows the routed signals. The Innovus GUI allows you to browse the design, which will
allow you to visualize things like congestion, pin locations, and DRC violations. In the upper right
corner, select Physical View. Then in the right-hand sidebar, select the Cell V checkbox, then
under Layer deselect layers M8, M9, V7, and V8 (since those are dominated by power straps and
are not used for routing). If you zoom in, you can see the locations of your standard cells and the
routing. You can also see the power straps located on some of the middle routing layers. If you
zoom in closer to an intersection of power straps on adjacent layers, you can see the vias between
them.

The yellow triangles in the design are the top level pins of the GCD design. If this block were to be
placed in a larger design, those are the locations where those locations would be routed to/from.

Q: Submit a screenshot of your design with the above visual settings set.

Take a look at the generated clock tree. Choose Clock > CCOpt Clock Tree Debugger. Choose Ok.
In this diagram, the source node is the clock source and the leaf nodes are the sequential elements
that the clock is distributed to. By look at the scale on the left of the diagram, you can see the
insertion delay and general skew between the different registers. You can click on these nodes to
highlight the nets in the physical view. (Figure 6). We typically want to see a balanced clock tree.
This means that the clock will be distributed evenly across the design to the sequential elements.
Having an (unintentionally) unbalanced clock tree can cause a lot of timing issues in the design.
Sometimes a design will require careful clock tree design that make use of structures like H-trees.

Q: Submit a screenshot of your clock tree debugger.

EE241B Tutorial, GCD: VLSI’s Hello World, Spring 2019 11

Figure 5: Routed signals shown in Innovus with larger core area

Figure 6: Clock tree debugger shown in Innovus

EE241B Tutorial, GCD: VLSI’s Hello World, Spring 2019 12

Remember how Hammer has Innovus save a database after every step? Well, you can open up the
design at each of these steps. You can restore an Innovus design by choosing File > Restore Design.
Choose the Innovus radio button, then Restore Design File and select the desired database, then
Ok. The database will then pop up.

The post place-and-route netlist can be found as build/par-rundir/gcdGCDUnit rtl.sim.v and
the final GDS can be found at build/par-rundir/gcdGCDUnit rtl.gds.

Summary

You have now taken an RTL-level description in Verilog, then simulated, synthesized, and place-
and-routed the design. You used Hammer as a VLSI flow driver to create this design in the ASAP7
technology. This was just a taste to give you a baseline experience with a VLSI flow. As described
before, there are many more steps and tools (and file formats to familiarize yourself with) in the flow
beyond the scope of this lab to even get something that works, not to mention the many advanced
power and clocking techniques used to create a good design. The lectures of the course cover
many of these concepts, but the best way to get familiar with them is with hands-on experience.
Hopefully, this lab gave you a baseline which you can build upon.

Some other steps in the flow not covered in this lab include gate level simulation which can help
verify design functionality and timing (if it is back-annotated), static/active power and rail analysis
for accurate power and to verify your power network (Cadence Voltus), static timing analysis
(Cadence Tempus), logical equivalence checking (LEC), among many others. DRC (design rule
checking), which checks if you design is legal, and LVS (layout vs schematic), which checks if your
layout matches your netlist provide a baseline signoff for your chip.

To get exposed to more parts of the Berkeley chip-design ecosystem, check out the Chipyard project,
which includes examples on how to create a Chisel-based project with a RISC-V core, integrate IP,
and emulate the design on FPGAs, in addition to a slightly more advanced Hammer VLSI example.

Acknowledgements

Many people have contributed to versions of this lab over the years. The lab was originally developed
for CS250 VLSI Systems Design course at University of California at Berkeley by Yunsup Lee.
Contributors include: Krste Asanović, Christopher Batten, John Lazzaro, and John Wawrzynek.
Updated verssions have been developped for the EE241B Advanced Digital Circuits course, taught
by Borivoje Nikolić. Contributors over the years include Brian Zimmer, Angie Wang, Bonjern
Yang, Sean Huang, Daniel Grubb, and Borivoje Nikolić.

Versions of this lab have been used in the following courses:

• CS250 VLSI Systems Design (2009-2010) - University of California at Berkeley

• EE241 abd EE241B Advanced Digital Circuits - University of California, Berkeley

• CSE291 Manycore System Design (2009) - University of California at San Diego

https://github.com/ucb-bar/chipyard

