
Introduction to Extraction and the Custom Design Flow

EE241 Tutorial 3
Written by Brian Zimmer (2013)
Updated by Sean Huang (2019)
Updated by Daniel Grubb (2020)

Overview

In Lab 1 (GCD: VLSI’s Hello World), you used the digital design flow to place-and-route a pre-
existing library of standard cells based on an RTL description. In Lab 2, you pushed the same
design through DRC and LVS. In this lab, we take an even closer look at a design. First, we will
place-and-route a 4-16 decoder using the same Hammer flow from Labs 1 and 2. We will then
extract the design and simulate both the non-extracted and extracted netlist. With that, we can
compare the timing and energy results between pre- and post-extraction.

Then, we will take a closer look at the ASAP7 standard cells we have been using throughout the
course and start a custom cell design in Cadence Virtuoso. You will layout a simple C2MOS latch,
run DRC to verify the layout is manufacturable, and LVS to verify that your layout matches your
schematic. Lastly, you will run parasitic extraction on your design and run some basic simulations
to estimate some of its characteristics.

Getting Started: Decoder Extraction

We will once again start with updating our environment. On the instructional machines, you can
either clone the same repository again or pull in the changes to an existing one.

% cd /scratch/userA

% git clone ~ee241/spring20-labs/ee241bS20

% cd ee241bS2020

% git submodule update --init --recursive

or

% cd /scratch/userA/ee241bS2020

% git pull // you will need to reconcile any local edits you’ve made

% git submodule update

% source sourceme.sh // NEEDS TO BE RUN EVERY NEW SESSION

Notice that there is now a decoder.yml in the lab repo. This contains the Hammer inputs for the
4-16 decoder we will be working with (it is pretty similar to gcd.yml in this case).

We will need to the the decoder through the tools using the Hammer flow. Again, since Hammer
generates a helper Make include, we can just run the below command.

% make lvs

If you take a look at the Makefile, there is something slightly different this time. Instead of calling
hammer-vlsi directly while using the Hammer flow, we call inst-vlsi.py. This file contains a

EE241 Tutorial 3, Introduction to the Custom Design Flow, Spring 2013 2

HammerDriver that extends the base HammerDriver class. This is how the Hammer flow allows
for flexibility in the design. If you want to edit the default steps that Hammer runs, you can do it
like this. You may add a Hammer hook here to inject custom TCL that doesn’t fit into a Hammer
API (any real tapeout will certainly have some custom TCL). You may insert hooks before or after
any default Hammer step (or another hook), you may replace a default Hammer step, or you may
remove a Hammer step. In this case, we have removed a custom Hammer step that we don’t need
for this lab.

PEX: Parasitic Extraction

We will be using the Calibre tool PEX to run parasitic extraction. Parasitic extraction will produce
a netlist with more accurately modeled capacitances and resistances for the nets in the design. We
can then simulate this netlist with Spice to get more accurate results than just the original post
P&R netlist. PEX will first run LVS (again) before exporting the extracted netlist.

We will start by opening up the decoder in CalibreDRV. Run the following from the ee241bS20
directory:

% ./build/lvs-rundir/generated-scripts/view_lvs

In CalibreDRV, click Verification then run PEX... on the toolbar. A dialog will open asking for
a runset which you can exit out of. Click on Rules, then select ee241bS20/pex-files/rcxControl
calibre asap7 170801.rul. This is the PEX rule deck for ASAP7. Then go to Inputs. For

the Layout, PEX should extract it from the layout of the decoder it already has. For the Netlist,
select decoder.include.sp in lvs-rundir (make sure ”Export from schematic viewer” is unselected).
Under Outputs, make sure the Netlist Format is set to HSPICE. Finally, click Run PEX.

Q: 1. Submit the first 40 lines of the ”decoder.pex.netlist” file generated by PEX.

Q: 2. Simulate the decoder and measure the delay from A[3] rising (the rest are 0)
to Z[8] rising and the average power for both the extracted netlist and the original
LVS netlist to compare them (some tips below). State the output load capacitance
you used.

We have supplied some HSPICE files to start with in ee241bS20/pex-sims/ that have the test-
benches mostly setup for you already. For the pre-extraction simulation, first run make hspice-netlist

in the base directory. This will generate an HSPICE compatible netlist from the LVS netlist at
lvs-rundir/decoder.hspice.sp. For this simulation, make sure that the ports match up with
the instantiation of the decoder in decoder.sp (the ports can get messed up in the transformation).
Make sure that the ASAP7 CDLs are included in your testbench (there are some provided helpers
that already have this for you). The extracted netlist includes a few other files that will be produced
in the lvs-rundir, so it might be easiest to run that simulation directly in the lvs-rundir.

Getting Started: Custom Design

In this portion of the lab, we will be exploring custom cell design. Figure 1 gives an overview of the
steps involved in the design flow of creating a custom cell and integrating it into a VLSI flow. We
will start by setting up Virtuoso (if you have not done so previously). We will import an existing

EE241 Tutorial 3, Introduction to the Custom Design Flow, Spring 2013 3

design of a flip flop in the ASAP7 PDK and introduce the steps you would take while building
a custom standard cell. We will examine its schematic, export a netlist, run DRC and LVS, and
simulate it. We will then discuss the remaining steps in the custom design flow to integrate your
design into the VLSI flow we have been using. You may also work through a custom design of a
C2MOS latch yourself for extra credit.

Schematic Entry
(Cadence Virtuoso)

Layout Entry
(Cadence Virtuoso)

DRC
(Calibre)

LVS
(Calibre)

Extraction
(Calibre PEX)

Simulation
(At any stage using
Synopsys HSpice)

Abstract (LEF)
Generation

(Cadence Abstract)

 .lib Generation
(Cadence Liberate)

 VLSI Flow

SPICE Netlist

Physical Layout

Manufacturable Layout

SPICE Netlist
including parasitics

Layout and
schematic match

Figure 1: Custom Cell Design Flow

Start by running:

% source ~ee241/spring20-labs/asap7_virtuoso/sourceme.sh

% tcsh \\ start C shell

$ source ~ee241/spring20-labs/asap7PDK_r1p5/cdslib/setup/setup_asap7.csh

$ exit \\ exit C shell

% virtuoso &

If you look at the list of libraries, you will notice that there are several libraries already setup (in
addition to the default virtuoso libraries). asap7 TechLib is the ASAP7 library that contains the
different transistor flavors available in ASAP7. asap7ssc7p5t is another library provided by ASAP7
that contains a few example standard cell views, including a flip flop, inverter, and tapcell. If you
wanted to view the layouts for the other standard cells in ASAP7, you could make a new library
by going to File — New — Library. Call it (asap7 std cells). Then select ”Attach to an existing
technology library” and choose asap7 TechLib. Then go to File — Import — Stream with Stream
File as ee241/spring20-labs/asap7libs 24/gds/asap7sc7p5t 24.gds and select the asap7 std cells
library. Attach it to asap7 TechLib and click Ok. This will stream in the layouts for all the
existing standard cells in ASAP7. If you go to the asap7 std cells library, you will notice there are

EE241 Tutorial 3, Introduction to the Custom Design Flow, Spring 2013 4

only SLVT layouts. This is a quirk of ASAP7 in which the PDK doesn’t provide different threshold
flavor cells which is why the ASAP7 Hammer plugin will automatically hack the PDK to make the
different threshold flavor cells available for use in a VLSI flow.

Creating the Custom Library

First, create a new library by going to File — New — Library and name it custom cell. Then
select ”Attach to an existing technology library” and choose asap7 TechLib. We will be exploring
the flip flop view that is already provided in ASAP7. In the library manager, go to asap7ssc7p5t

and right-click on DFFHQNx1 ASAP7 75t R and click Copy. In the new window, change the To library
to be custom cell and the Cell to be custom dff R, and click Ok. This will give us a pre-made
schematic, symbol, and layout for our ”custom” cell.

Schematic Entry

For a truly custom cell, you would create a new schematic view in your new library and build your
design using the components in the ASAP7 PDK. Once you built it, you can simulate it to verify
its operation, including Monte Carlo simulations to test its operation with process variations.

In this case, you can open up the existing schematic that we copied over (it should look like figure
2. Answer the following questions about the schematic:

Q: 3. What is the purpose of the tristate buffer that connect from the ”MS” node to
the ”MH” node (output of the input latch)? Does this affect the setup time? Why
do these tristate transistors have fewer fins than the input transistors?

Notice the top level pins of the schematic. These are the same pins that will be the inputs and
outputs of our standard cell layout.

If you want to instantiate this cell in a testbench or other schematic, you need to create a symbol
view. We already have one in this case, but to create one you can go to Create — Cellview —
From Cellview, and click ok in the dialog box. You can leave the symbol as is, or use the drawing
tools to draw something custom. When you are done, save and close the window.

Schematic Netlist Export

We will be running LVS/PEX against this schematic later, so we will need to export this schematic
as a netlist. Most physical verification tools perform verification on generic filetypes, such as GDS
files for layout and SPICE netlists for schematics. To export the DFF schematic, go to the Virtuoso
main log window and go to File — Export — CDL...

Populate the following fields:

• Library Name: Your new Custom Cell library

• Top Cell Name: custom dff R (or your top cell name)

• View Name: schematic

• Switch View List: auCdl schematic

• Stop View List: auCdl

EE241 Tutorial 3, Introduction to the Custom Design Flow, Spring 2013 5

Figure 2: Schematic of the DFF.

• Output CDL Netlist File: custom dff R.cdl

• Make sure ”Map Bus Name from <> to []” is checked.

Hit Apply and wait for the CDL to be exported. Once this is done, you can look at the exported
CDL to sanity check it.

Layout Entry

As discussed above, we will be using the existing DFF layout. The following instructions are a
general tutorial for basic layout editing.

Figure 3 is a screenshot of what your copied DFF layout should look like. A great resource for
layout in ASAP7 can be found here. This describes most of the important layers and provides a
layout tutorial for a gate in ASAP7. If you are unfamiliar with transistor level layout, it would
be instructive for you to go through the DFF layout and correlate parts of it to the schematic. If
you’re unsure of where to start, you can use the top level input pins (M1 pins) and the number of
fins for different transistors as references.

For simple things, you only need a few commands to change the layout. By pressing ∼, 1, 2, 3
etc you can show only certain layers. Press Shift-1 to add M1 to whatever is visible. To move
something, hover over the object, then press ”m” on the keyboard. To make something bigger
or smaller, hover over the edge of the object, then press ”s” on the keyboard, then click again at
the final location. Press ”Esc” if you selected something incorrectly. To add new wire, press Ctrl-
Shift-W (then F3 will change the options such as the width). To just add a rectangle, select the
desired layer in the layer pallete, and press ”r”. Then click on the two corners to create. Remember
that selecting an object and hitting ”q” will bring up info about it and allow you to edit certain

http://venividiwiki.ee.virginia.edu/mediawiki/index.php/FinFET_ASAP7_CellLayout

EE241 Tutorial 3, Introduction to the Custom Design Flow, Spring 2013 6

Figure 3: DFF Layout

characteristics. ”k” allows you to place rulers to measure distances in the layout.

No modifications are needed for our layout, but you should now be familiar with what the DFF
looks like.

Cell Verification

When you are done creating your schematic (and exported a netlist) and the layout, you must run
DRC and LVS to verify that you have made the cell you wanted to make and that it is actually
manufacturable. You can run Calibre directly from Virtuoso because there is a Calibre plugin
(accessible from the tool bar) included in our setup. This lets us use the same Calibre tools we ran
in the previous labs to verify our custom cell.

DRC

To run DRC, go to Calibre — Run nmDRC. Select the rule file to be (”/home/ff/ee241/spring20-
labs/asap7PDK r1p5/calibre/ruledirs/drc/drcRules calibre asap7.rul”). Make sure that under In-
puts, ”Export from layout viewer” is selected and then Run DRC.

Your design should be DRC clean except for a LUP error.

Q: 4. Read this DRC error and explain what the error is. What is the purpose and
operation of a tapcell? You can look at an ASAP7 tapcell layout in the the same
asap7ssc7p5t library we copied the DFF schmatic and layout from.

LVS

You don’t have to run LVS for this lab, but if you are building a custom cell from scratch,
you can do it similarly to DRC by going to Calibre — Run nmLVS. Change the runset file to
”/home/ff/ee241/spring20-labs/asap7PDK r1p5/calibre/ruledirs/lvs/lvsRules calibre asap7.rul”. Make
sure to select the CDL we exported earlier as the netlist.

If you are running into LVS errors, Calibre will describe the discrepancies and allow you to highlight
the offending nets just like when we ran LVS for a larger design.

EE241 Tutorial 3, Introduction to the Custom Design Flow, Spring 2013 7

Extraction

To run parasitic extraction in Virtuoso, open the layout view and go to Calibre — Run PEX. The
settings for this extraction are essentially the same as earlier in the lab and the same edited ruleset
from the ee241bS20/pex-files/ should be used. Make sure that you select the CDL we exported
earlier for the Input netlist (and that ”Export from schematic viewer” is unchecked). Again, make
sure that the ouptut format is set to HSPICE. A set of PEX netlists should be produced like for the
decoder.

Note that it will say that the LVS run fails even thought the PEX netlist is produced. This is
because it does not like that the substrate pins are also named VDD and VSS, so it can be ignored.
In the generated pex netlist, the pins for the transistor body connections will be called VDD 2
and VSS 2.

Extracted Simulation

Finally, we will do a couple more simulations on the exported CDL and the extracted netlist. You
should be able to use a very similar testbench to the one used earlier for the decoder. We have
included a spice testbench in ee241/spring20-labs/asap7 virtuoso that may be useful to you.
Remember that the output of this flip flop is QN, not Q. Make sure to check the ordering of the
ports of your DFF between the different netlists.

Q: 5. Estimate the CLK-Q time of your DFF from for both the exported CDL and the
extracted netlist from PEX. Include a screenshot (or the text) of your spice/otherwise
testbench. State the load capacitance and rise/fall times you used.

Q: 6. Estimate the setup time of your DFF for both the exported CDL and the
extracted netlist from PEX. State the load capacitance and rise/fall times you used.
Also, include a screenshot of the waveforms of CLK, D, and QN for the simulation
that you determined the setup time from (if you’re using hspice, you can use waveview
or wv on the command line).

If you’re curious, you can try comparing your results to the timing parameters for DFFHQNx1 ASAP7 75t R
in ~ee241/spring20-labs/asap7libs 24/lib/asap7sc7p5t 24 SEQ RVT TT.lib. You can find
the table units and templates at the top of the file, and then find the timing lookup tables for
clk-q, setup, etc. by searching for the DFFHQNx1 ASAP7 75t R entry.

Extra Credit Layout

For some extra credit, you can run through the flow described in this document but create a basic
dynamic (or static if you like) C2MOS latch in ASAP7 from scratch. Submit the schematic, layout,
and DRC/LVS results. You can also simulate after extraction like we did for the copied DFF. You
can do this from scratch, start from a gate an existing gate like a NAND2, or use the DFF layout
and delete portions and reconfigure it.

EE241 Tutorial 3, Introduction to the Custom Design Flow, Spring 2013 8

Conclusion

This lab was meant to bring you a bit closer to the actual hardware you are designing with in a VLSI
flow. The physical circuits you work with in a VLSI flow may sometimes seem quite abstracted
away by the tools, but having the ability to look at the transistor level and understand the design
is critical to solving problems that come up. The introduction to custom cell design is also meant
to have you take a closer look at the standard cells we have used throughout the semester and
understand the underlying circuits. One follow up activity to this would be to run a Monte Carlo
analysis with your schematic to analyze the effect of process variations.

In order to fully use your custom cell in a digital flow, you would also need to generate all of the
required collateral for the tools from your layout and schematic that we discussed in Lab 1. You
would need to describe the cell’s pre-computed timing characteristics (so it can be synthesized)
and physical attributes (so it can be place-and-routed). If you want to explore this and try to
add a custom cell to your ASAP7 flow, you can look at tools like the Cadence Virtuoso Abstract
Generator (to create the LEF) and Cadence Liberate. Once you’ve done this, you can include it in
your VLSI design flow for the synthesis and P&R tools to use!

Acknowledgements

Thank you to ECE 6332 - Introduction to VLSI Design (for the 21st Century) at UVA for the
ASAP7 layout reference.

