EE241B Advanced Digital Integrated Circuits

HOMEWORK 2.

Due: Friday, March 6, 2020.

This is an individual assignment!

1. Lab2
a) Run through lab 2 and answer all the questions as the first problem for this homework (all questions are prefixed by a "Q:"). There are 5 questions.

2. Delays

Consider an inverter driving a capacitive load in 28 nm bulk-CMOS technology.

All transistors are minimum length and $W_{n}=0.5 \mu \mathrm{~m} W_{p}=1 \mu \mathrm{~m}, V_{D D}=1 \mathrm{~V}$. In this technology, $C_{g}=C_{d}=2 \mathrm{fF} / \mu \mathrm{m}$, transistor thresholds are 0.25 V and fanout-of-4 inverter delay is 15 ps .
a) For what range of sizes of the load capacitor, C_{L}, adding another inverter to drive the load reduces the delay?
b) If the input capacitance of the first inverter in figure below is set to $C_{1}=3 \mathrm{fF}$, the wire capacitance C_{w} is 6 fF , how would you size the second inverter that is driving 13.5 fF load to minimize the overall delay from In to Out? Is this result intuitive?

3. Latch Timing

A timing path with a single register driving a latch-based system is shown in Figure 2. R0 is a rising-edge triggered register, while R1, R2, and R3 are level sensitive. There are two 50% duty cycle clock phases available, with clkb offset from clk by half a period. Both registers and latches have zero hold time, and there is no clock skew in the system. Registers have $\mathrm{t}_{\text {clk-Q }}=100$ ps. Latches have $\mathrm{t}_{\mathrm{clk}-\mathrm{Q}}=\mathrm{t}_{\mathrm{D}-\mathrm{Q}}=\mathrm{t}_{\mathrm{su}}=100 \mathrm{ps}$.

Figure 2.
a) The critical path of $S 1$ is 400 ps , the critical path of $S 2$ is 500 ps , and the critical path of S 3 is 1.3 ns. Compute the minimum clock period.
b) Assume that we can model the on current with $I_{o n}=K\left(V_{D D}-V_{t h z}\right)$, with $K=0.002, V_{D D}=1$ V , and $V_{t h z}=0.25 \mathrm{~V}$. There is a systematic variation on $V_{t h z}$. What is the maximum value of $V_{t h z}$ that only leads to a 10% increase in delay?
c) The systematic variation of $V_{t h z}$ is normally distributed with $\sigma=0.03 \mathrm{~V}$. What would be the yield in terms of timing if you are allowed a 10% margin on the clock period?

