HBM Flourishes, But HMC Lives. While high bandwidth memory (HBM) is flourishing, hybrid memory cube (HMC) is finding life in applications that didn't exist when it was first conceived.
Announcements

• Assignment 2 due on Friday
 • Quiz 2 on Tuesday, March 10

• Please send me links to your project web pages
Outline

• Module 4
 • SRAM margins
4. Memory
4.B SRAM Static Retention Margin
SRAM Cell/Array

- Hold (retention) stability
- Read stability
- Write stability
- Read access time
SRAM Operation

Write

Retention

Read
6T-SRAM Array Basics – Write Operation

- **WL**: Word Line
- **BL**: Bit Line
- **BLRn**: Bit Line Read
- **WBS**: Write Buffer Select
- **CBL**: Bit Line Capacity
- **Dl**: Data Line
- **DIN**: Data Input
- **WRITE**: Write Enable
- **NC**: Not Connected
- **NT**: Negative Transistor
- **BLC**: Bit Line Capacitive Load
- **BLT**: Bit Line Transistor

Diagram:
- **Write Driver**
- **High-node discharged through series stacked NFET devices. NFET effective device strength must overcome cell pull-up.**
- **“Weak” 1 written through source-follower NFET x-fer device**
6T-SRAM Array Basics – Read Operation

Local Read Circuit

Sense Amplifier: Longer BLs

Domino: Short BLs, SOI

Positive feedback causes high-node to droop

Pull-down / Transfer-device ratio (Beta ratio) determines how high the low node rises
SRAM Design – Hold (Retention) Stability

Scaling trend:
- Increased gate leakage + degraded I_{ON}/I_{OFF} ratio
- Lower V_{DD} during standby
- PMOS load devices must compensate for leakage
Retention Stability

- Would like to reduce supply in standby
Monte-Carlo Simulation of DRV Distribution

Histogram of cell #

Simulated DRV of 1500 SRAM cells (mV)

DRV – Data retention voltage

Qin, ISQED'04
Vmin Distribution

• Aggregate minimum operating voltage
• Digital test under supply sweep
4.C Static Read/Write Margins
Read SNM is the contention between the two sides of the cell under read stress.

\[\Delta V_{Th} \propto \frac{1}{C_{ox} \sqrt{WL}} \]

Due to RDF

90nm simulation

E. Seevinck, JSSC 1987
Read SNM - Measurements

Retention fluctuations

Read Fluctuations

Read margin vs. retention margin

Bhavnagarwala, IEDM'05
• A, B, and C correspond to the two stable points A and C and the meta-stable point B of the SNM curve.

• When points A and B coincide, the cell is at the edge of stability and a destructive read can occur.

Grossar, JSSC’06
Write Stability – Write Noise Margin (WNM)

- Writeability is becoming harder with scaling
- Optimizing read stability and writeability at the same time is difficult
Writeability – BL/WL Write Margins

- Highest BL voltage under which write is possible when BLC is kept precharged
- Difference between VDD and lowest WL voltage under which write is possible
Write Stability – Write Current (N-Curve)

- Minimum current into the storage node
The Conflict Between Read and Write

READ - OPTIMIZED SYSTEM

WRITE - OPTIMIZED SYSTEM

Write Driver

Sense Amplifier

Write Driver

Sense Amplifier
V_{Th} Window

- Assuming global spread

Yamaoka, ISSCC’05
4.D Dynamic Margins
6-T SRAM Static/Dynamic Stability

- **Read Margin**
 - SNM: pessimistic

- **Write Margin**
 - WNM: optimistic

- **Introduction to dynamic margins**
 - Three failure modes: read stability, writeability and read access time
Dynamic Write Stability

- $T_A < T_{\text{write}} < T_B$
- T_{write} = dynamic write stability
- Static margins are optimistic

Khalil, TVLSI‘08
Dynamic Read Stability

- $T_A < T_{\text{read}} < T_B$
- $T_{\text{read}} = \text{dynamic read stability}$
- Static margins are pessimistic

Khalil, TVLSI ‘08
Dynamic Read Access

- $T_A < T_{\text{access}} < T_B$
- PD_1 and PG_1 are critical

Khalil, TVLSI ‘08
SRAM Overall Vmin

- Both read and write
- Some contradicting data
SRAM Vmin Scaling Trend

- SRAM voltage often higher than logic

- J. Chang, ISSCC'20
Next Lecture

• Peripheral circuits

• SRAM assist techniques

• Alternatives to 6T SRAM