Lecture 13: Material Properties

Lecture Outline

- Reading: Senturia Chpt. 8
- Lecture Topics:
 - Elasticity: Nomenclature
 - Stress
 - Strain
 - Poisson Ratio
 - Material Properties
 - Young's modulus
 - Yield strength
 - Quality factor
 - On-chip Measurement of Material Properties
 - Anisotropic Material Properties
Normal Stress (1D)

If the force acts normal to a surface, then the stress is called a normal stress.

\[
\sigma = \frac{F}{A} \quad \text{[N/m}^2\text{] or [Pa]}
\]

 stress per unit area

- Force assumed uniform over the whole area A
- Standard mks unit

Microscopic Definition: Force per unit area acting on the surface of a differential volume element of a solid body.

Note: Force acts uniformly over each face.

Differential volume element

Strain (1D)

Strain : \(\varepsilon = \frac{L' - L}{L} = \frac{\Delta L}{L} \) (Unitless)

Sometimes a unit called "microstrain" is used, where

\[\mu \varepsilon = \frac{\Delta L}{L} \text{ per unit in } 10^6 \]

In the elastic regime (i.e., for "small" strain)

\[\sigma = E \varepsilon \] (Unitless)

For solids:

- MPA: Glass
- GPa: PolySi: 150 GPa

Yield stress relates to stress of elasticity.
The Poisson Ratio

Apply normal stress to a free-standing object

\(\varepsilon_x = \frac{\Delta w}{w} \)
\(\gamma = -\nu \varepsilon_x \)

Shear Stress & Strain (2D)

Note: Assume compensating forces are applied to the vertical faces to avoid a net torque. (This by convention)

Shear Stress:
\[\tau = \frac{F}{A} \]

Shear Strain:
\[\gamma = \frac{\tau}{G} \]
\[G = \frac{E}{2(1+\nu)} \]
2D and 3D Considerations

• Important assumption: the differential volume element is in static equilibrium → no net forces or torques (i.e., rotational movements)
 - Every σ must have an equal σ in the opposite direction on the other side of the element
 - For no net torque, the shear forces on different faces must also be matched as follows:
 \[\tau_{xy} = \tau_{yx} \quad \tau_{xz} = \tau_{zx} \quad \tau_{yz} = \tau_{zy} \]

2D Strain

• In general, motion consists of
 - rigid-body displacement (motion of the center of mass)
 - rigid-body rotation (rotation about the center of mass)
 - Deformation relative to displacement and rotation

• Must work with displacement vectors
• Differential definition of axial strain:
 \[\varepsilon_x = \frac{u_x(x + \Delta x) - u_x(x)}{\Delta x} = \frac{\partial u_x}{\partial x} \]
2D Shear Strain

For shear strains, must remove any rigid body rotation that accompanies deformation.

\[\gamma_{xy} = \theta_1 + \theta_2 = \frac{\Delta u_x}{\Delta y} + \frac{\Delta u_y}{\Delta x} = \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right) \]

For small amplitude deformations
\[\xi = \phi = 0 \]

Volume Change for a Uniaxial Stress

Stresses acting on a differential volume element. Given an x-directed uniaxial stress, \(\sigma_x \), what is the \(\Delta V \)?

\[\Delta x \to \Delta x(1+\epsilon_x) \]
\[\Delta y \to \Delta y(1-\epsilon_y) \]
\[\Delta z \to \Delta z(1-\epsilon_z) \]

The resulting change in volume \(\Delta V \)

\[\Delta V = \Delta x \Delta y \Delta z (1+\epsilon_x)(1-\epsilon_y)(1-\epsilon_z) \]

(\text{Assume small strain}) \[\Delta V = \Delta x \Delta y \Delta z [(1+\epsilon_x)(1-\epsilon_y)(1-\epsilon_z) - 1] \]

\[(1+\epsilon_x)^2 \approx 1+2\epsilon_x \]

For \(\epsilon < 0.5 \) (small), no \(\Delta V \)

If \(\epsilon < 0.5 \) (finite), \(\Delta V \) is finite.
Isotropic Elasticity in 3D

- Isotropic = same in all directions
- The complete stress-strain relations for an isotropic elastic solid in 3D: (i.e., a generalized Hooke’s Law)

\[
\begin{align*}
\epsilon_x &= \frac{1}{E} \left[\sigma_x - \nu (\sigma_y + \sigma_z) \right] \\
\gamma_{xy} &= \frac{1}{G} \tau_{xy} \\
\epsilon_y &= \frac{1}{E} \left[\sigma_y - \nu (\sigma_z + \sigma_x) \right] \\
\gamma_{yz} &= \frac{1}{G} \tau_{yz} \\
\epsilon_z &= \frac{1}{E} \left[\sigma_z - \nu (\sigma_x + \sigma_y) \right] \\
\gamma_{zx} &= \frac{1}{G} \tau_{zx}
\end{align*}
\]

Basically, add in off-axis strains from normal stresses in other directions

Important Case: Plane Stress

- Common case: very thin film coating a thin, relatively rigid substrate (e.g., a silicon wafer)

- At regions more than 3 thicknesses from edges, the top surface is stress-free → \(\sigma_z = 0 \)
- Get two components of in-plane stress:

\[
\begin{align*}
\epsilon_x &= (1/E)[\sigma_x - \nu(\sigma_y + 0)] \\
\epsilon_y &= (1/E)[\sigma_y - \nu(\sigma_x + 0)]
\end{align*}
\]
Important Case: Plane Stress (cont.)

- Symmetry in the xy-plane → $\sigma_x = \sigma_y = \sigma$
- Thus, the in-plane strain components are: $\varepsilon_x = \varepsilon_y = \varepsilon$

 where

 $$\varepsilon_x = (1/E)[\sigma - \nu \sigma] = \frac{\sigma}{[E/(1-\nu)]} = \frac{\sigma}{E'}$$

 and where

 Biaxial Modulus $E' = \frac{E}{1-\nu}$

Edge Region of a Tensile ($\sigma>0$) Film

Net non-zero in-plane force (that we just analyzed)

At free edge, in-plane force must be zero

Film must be bent back, here

There's no Poisson contraction, so the film is slightly thicker, here

Shear stresses $F \neq 0$

F = 0

Extra peel force

Discontinuity of stress at the attached corner → stress concentration

Peel forces that can peel the film off the surface
Linear Thermal Expansion

- As temperature increases, most solids expand in volume
- Definition: linear thermal expansion coefficient

\[
\Delta \alpha_T = \frac{d\varepsilon}{dT} \quad \text{[Kelvin}^{-1}]\]

Remarks:
- \(\alpha_T\) values tend to be in the 10\(^{-6}\) to 10\(^{-7}\) range
- Can capture the 10\(^{-6}\) by using dimensions of \(\mu\)strain/K, where 10\(^{-6}\) K\(^{-1}\) = 1 \(\mu\)strain/K
- In 3D, get volume thermal expansion coefficient \(\frac{\Delta V}{V} = 3\alpha_T\Delta T\)

For moderate temperature excursions, \(\alpha_T\) can be treated as a constant of the material, but in actuality, it is a function of temperature

\[\alpha_T \text{ As a Function of Temperature}\]

Cubic symmetry implies that \(\alpha\) is independent of direction

[Madou, Fundamentals of Microfabrication, CRC Press, 1998]
Thin-Film Thermal Stress

Assume film is deposited stress-free at a temperature T_d, then the whole thing is cooled to room temperature T_r.

Substrate much thicker than thin film \rightarrow substrate dictates the amount of contraction for both it and the thin film.

\[\varepsilon_s = -\alpha_{Ts} \Delta T, \quad \text{where} \quad \Delta T = T_d - T_r \]

Silicon Substrate ($\alpha_{Ts} = 2.8 \times 10^{-6} \text{ K}^{-1}$)

Thin Film

Linear Thermal Expansion

But the film is attached to the substrate, so the actual strain in the film:

\[\varepsilon_{f,\text{attached}} = \varepsilon_s = -\alpha_{Ts} \Delta T \]

Thermal Mismatch Strain:

\[\varepsilon_{f,\text{mismatch}} = (\alpha_{Ts} - \alpha_{Tf}) \Delta T \]

Note that this is a mismatch strain.

It can only be developed by an in-plane biaxial stress:

\[\sigma_{f,\text{mismatch}} = \frac{E}{(1-\nu)} \varepsilon_{f,\text{mismatch}} \]

Example: Thin film is polyimide $\rightarrow \alpha_{Tf} = 70 \times 10^{-6} \text{ K}^{-1}$, $E = 4.6 \text{ GPa}$

Degraded at 230°C, then cooled to RT = 25°C $\rightarrow \Delta T = 225 \text{ K}$

\[\varepsilon_{f,\text{mismatch}} = (70 \times 10^{-6})(225) = 1.5 \times 10^{-2} \]

\[\sigma_{f,\text{mismatch}} = \frac{4.6}{(1-0.3)}(1.5 \times 10^{-2}) = 60.5 \text{ MPa} \]

Since it is (t) tensile, an anti-parallel stress or compressive
MEMS Material Properties

Material Properties for MEMS

<table>
<thead>
<tr>
<th>Material</th>
<th>Density, ρ</th>
<th>Modulus, E_s</th>
<th>E/ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kg/m3</td>
<td>GPa</td>
<td>GN/kg-m</td>
</tr>
<tr>
<td>Silicon</td>
<td>2330</td>
<td>165</td>
<td>72</td>
</tr>
<tr>
<td>Silicon Oxide</td>
<td>2200</td>
<td>73</td>
<td>36</td>
</tr>
<tr>
<td>Silicon Nitride</td>
<td>3300</td>
<td>304</td>
<td>92</td>
</tr>
<tr>
<td>Nickel</td>
<td>8900</td>
<td>207</td>
<td>23</td>
</tr>
<tr>
<td>Aluminum</td>
<td>2710</td>
<td>69</td>
<td>25</td>
</tr>
<tr>
<td>Aluminum Oxide</td>
<td>3970</td>
<td>393</td>
<td>99</td>
</tr>
<tr>
<td>Silicon Carbide</td>
<td>3300</td>
<td>430</td>
<td>130</td>
</tr>
<tr>
<td>Diamond</td>
<td>3510</td>
<td>1035</td>
<td>295</td>
</tr>
</tbody>
</table>

Units: $(m/s)^2$

$\sqrt{E/\rho}$ is acoustic velocity

[Mark Spearing, MIT]
Young's Modulus Versus Density

Lines of constant acoustic velocity

[Ashby, Mechanics of Materials, Pergamon, 1992]

Yield Strength

- **Definition:** the stress at which a material experiences significant plastic deformation (defined at 0.2% offset pt.)
- **Below the yield point:** material deforms elastically → returns to its original shape when the applied stress is removed
- **Beyond the yield point:** some fraction of the deformation is permanent and non-reversible

- **Yield Strength:** defined at 0.2% offset pt.
- **Elastic Limit:** stress at which permanent deformation begins
- **Proportionality Limit:** point at which curve goes nonlinear
- **True Elastic Limit:** lowest stress at which dislocations move
Yield Strength (cont.)

- Below: typical stress vs. strain curves for brittle (e.g., Si) and ductile (e.g., steel) materials

![Stress and Strain Diagram]

Young's Modulus and Useful Strength

<table>
<thead>
<tr>
<th>Material</th>
<th>Modulus, E, GPa</th>
<th>Useful Strength*, σ_f, MPa</th>
<th>$\frac{\sigma_f}{E} \times 10^3$</th>
<th>$\frac{\sigma_f^2}{E}$ MJ/m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon</td>
<td>165</td>
<td>4000</td>
<td>24</td>
<td>97</td>
</tr>
<tr>
<td>Silicon Oxide</td>
<td>73</td>
<td>1000</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Silicon Nitride</td>
<td>304</td>
<td>1000</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Nickel</td>
<td>207</td>
<td>500</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>Aluminum</td>
<td>69</td>
<td>300</td>
<td>4</td>
<td>1.3</td>
</tr>
<tr>
<td>Aluminum Oxide</td>
<td>393</td>
<td>2000</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Silicon Carbide</td>
<td>430</td>
<td>2000</td>
<td>4</td>
<td>9.3</td>
</tr>
<tr>
<td>Diamond</td>
<td>1035</td>
<td>1000</td>
<td>1</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Young’s Modulus Versus Strength

[Ashby, Mechanics of Materials, Pergamon, 1992]

Quality Factor (or Q)
Quality Factor (or Q)

• Measure of the frequency selectivity of a tuned circuit

Definition:
\[
Q = \frac{\text{Total Energy Per Cycle}}{\text{Energy Lost Per Cycle}} = \frac{f_0}{BW_{3\text{dB}}}
\]

• Example: series LCR circuit

\[
Q = \frac{\text{Im}(Z)}{\text{Re}(Z)} = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}
\]

• Example: parallel LCR circuit

\[
Q = \frac{\text{Im}(Y)}{\text{Re}(Y)} = \frac{\omega_0 C}{G} = \frac{1}{\omega_0 LG}
\]

Selective Low-Loss Filters: Need Q

• In resonator-based filters: high tank $Q \Leftrightarrow$ low insertion loss

• At right: a 0.1% bandwidth, 3-res filter @ 1 GHz (simulated)
 \[\Rightarrow\] heavy insertion loss for resonator $Q < 10,000$
Oscillator: Need for High Q

- **Main Function**: provide a stable output frequency
- **Difficulty**: superposed noise degrades frequency stability

\[v_o(t) = V_0 \sin(2\pi f_0 t) \]

Ideal Sinusoid

\[v_o(t) = (V_0 + \xi(t)) \sin(2\pi f_0 t + \theta(t)) \]

Real Sinusoid

Frequency-Selective Tank

Sustaining Amplifier

Higher Q

Tighter Spectrum

Zero-Crossing Point