Lecture 18: Resonance Frequency
Lecture Outline

• Reading: Senturia, Chpt. 10
• Lecture Topics:
 - Energy Methods
 - Virtual Work
 - Energy Formulations
 - Tapered Beam Example
 - Estimating Resonance Frequency
Estimating Resonance Frequency
Clamped-Clamped Beam \(\mu \)Resonator

Resonator Beam

Electrode

Sinusoidal Excitation

Voltage-to-Force Capacitive Transducer

\[\nu_i = V_i \cos[\omega_o t] \rightarrow f_i = F_i \cos[\omega_o t] \]

- \(\omega \neq \omega_o \): small amplitude
- \(\omega = \omega_o \): maximum amplitude \(\rightarrow \) beam reaches its maximum potential and kinetic energies

\[V_P \]

\[i_o \]

\[i_o \]

\[Q \approx 10,000 \]
Estimating Resonance Frequency

- Assume simple harmonic motion:

\[x(t) = x_0 \cos(\omega t) \]

- Potential Energy:

\[W(t) = \frac{1}{2} k x^2(t) = \frac{1}{2} k x_0^2 \cos^2(\omega t) \]

- Kinetic Energy:

\[K(t) = \frac{1}{2} M x^2(t) = \frac{1}{2} M x_0^2 \omega^2 \sin^2(\omega t) \]
Estimating Resonance Frequency (cont)

• Energy must be conserved:
 - Potential Energy + Kinetic Energy = Total Energy
 - Must be true at every point on the mechanical structure

 Occurs at peak displacement

 \[W_{\text{max}} = \frac{1}{2} kx_o^2 \]

 Maximum Potential Energy

 Stiffness

 Displacement Amplitude

 Occurs when the beam moves through zero displacement

 \[K_{\text{max}} = \frac{1}{2} M\omega^2 x_o^2 \]

 Maximum Kinetic Energy

 Mass

 Radian Frequency

• Solving, we obtain for resonance frequency:

 \[\omega = \sqrt{\frac{k}{M}} \]
Example: ADXL-50

- The proof mass of the ADXL-50 is many times larger than the effective mass of its suspension beams
 - Can ignore the mass of the suspension beams (which greatly simplifies the analysis)
- Suspension Beam: $L = 260 \, \mu m$, $h = 2.3 \, \mu m$, $W = 2 \, \mu m$
Lumped Spring-Mass Approximation

- Mass is dominated by the proof mass
 - 60% of mass from sense fingers
 - Mass = \(M = 162 \text{ ng} \) (nano-grams)

- Suspension: four tensioned beams
 - Include both bending and stretching terms [A.P. Pisano, BSAC Inertial Sensor Short Courses, 1995-1998]

\[k_c \rightarrow \text{stiffness of a cantilever} \]
\[F/4 \]

\[\text{Bending compliance} \ k_b^{-1} \]

\[\text{Stretching compliance} \ k_{st}^{-1} \]
ADXL-50 Suspension Model

- **Bending contribution:**
 \[k_b^{-1} = \left(\frac{1}{k_c} + \frac{1}{k_o} \right) = \frac{L^3}{EWh^3} = 4.2 \mu m/\mu N \]

- **Stretching contribution:**
 \[k_{st}^{-1} = \frac{L}{S} = \frac{L}{6Wh} = 1.14 \mu m/\mu N \]

- **Total spring constant:** add bending to stretching (stiffnesses are in parallel) + (4 beams in parallel)
 \[k = 4(k_b + k_{st}) = 4(0.24 + 0.8) = 4.48 \mu N/\mu m \]

\[F_y = S \sin \theta = S(x/L) = \left(\frac{S}{L} \right)x \]
• Using a lumped mass-spring approximation:

\[f = \frac{1}{2\pi} \sqrt{\frac{k}{M}} = \frac{1}{2\pi} \sqrt{\frac{4.48N/m}{162 \times 10^{-12} \text{ kg}}} = 26.5kHz \]

• On the ADXL-50 Data Sheet: \(f_o = 24 \text{ kHz} \)

\(\Rightarrow \) Why the 10% difference?

\(\Rightarrow \) Well, it’s approximate … plus …

\(\Rightarrow \) Above analysis does not include the frequency-pulling effect of the DC bias voltage across the plate sense fingers and stationary sense fingers … something we’ll cover later on …
• Vibrating structure displacement function:

\[y(x, t) = \hat{y}(x) \cos(\omega t) \]

Maximum displacement function (i.e., mode shape function)
Seen when velocity \(\dot{y}(x, t) = 0 \)

• Procedure for determining resonance frequency:
 ➤ Use the static displacement of the structure as a trial function and find the strain energy \(W_{\text{max}} \) at the point of maximum displacement (e.g., when \(t=0, \pi/\omega, ... \))
 ➤ Determine the maximum kinetic energy when the beam is at zero displacement (e.g., when it experiences its maximum velocity)
 ➤ Equate energies and solve for frequency
Maximum Kinetic Energy

- **Displacement:** \(y(x, t) = \hat{y}(x) \cos[\omega t] \)

- **Velocity:** \(v(x, t) = \frac{\partial y(x, t)}{\partial t} = -\omega \hat{y}(x) \sin[\omega t] \)

- At times \(t = \pi/(2\omega), 3\pi/(2\omega), \ldots \)

\[\hat{y}(x, t) = 0 \]

The displacement of the structure is \(y(x, t) = 0 \)

The velocity is maximum and all of the energy in the structure is kinetic (since \(\mathcal{W} = 0 \)):

\[v(x, \pi/(\hbar \omega)) = -\omega \hat{y}(x) \]
Maximum Kinetic Energy (cont)

• At times $t = \pi/(2\omega)$, $3\pi/(2\omega)$, ...

Velocity: $v(x, \frac{n\pi}{(n\omega)}) = -\omega \hat{y}(x)$

$\frac{dK}{dt} = \frac{1}{2} \cdot dm \cdot [v(x,t)]^2$

$dm = \rho (Wh \cdot dx)$

$= Maximum Kinetic Energy:$

$K_{max} = \int_0^L \frac{1}{2} \rho Wh dx \cdot v^2(x, t) = \int_0^L \frac{1}{2} \rho Wh \omega^2 \hat{y}(x)^2 dx$

(time when velocity is maximum)
The Raleigh-Ritz Method

• Equate the maximum potential and maximum kinetic energies:

\[K_{\text{max}} = \int_0^L \frac{1}{2} \rho Wh \omega^2 \hat{y}^2(x) \, dx = W_{\text{max}} \]

• Rearranging yields for resonance frequency:

\[\omega = \sqrt{\frac{L}{\int_0^L \frac{1}{2} \rho Wh \hat{y}^2(x) \, dx}} \]

\(\omega = \) resonance frequency
\(W_{\text{max}} = \) maximum potential energy
\(\rho = \) density of the structural material
\(W = \) beam width
\(h = \) beam thickness
\(\hat{y}(x) = \) resonance mode shape
Example: Folded-Beam Resonator

- Derive an expression for the resonance frequency of the folded-beam structure at left.

Use Rayleigh-Ritz method:

\[\text{KE}_{\text{max}} = \text{PE}_{\text{max}} \]

Kinetic Energy:

\[\text{KE}_{\text{max}} = \text{KE}_s + \text{KE}_t + \text{KE}_b \]

- shuttle
- trusses
- beams

\[= \frac{1}{2} \omega_s^2 M_s + \frac{1}{2} \omega_t^2 M_t + \frac{1}{2} \int \omega_b^2 dM_b \]

Anchor

- mass \(M_t/2 \)

Shuttle

- mass \(M_s \)

Folded truss

- mass \(M_b \)

- anchor height \(h = \text{thickness} \)

- maximum displacement of the shuttle \(x_0 \)
Get Kinetic Energies

Velocity of the shuttle: \(V_s = \omega_0 x_0 \)

Velocity of the truss: \(V_t = \frac{1}{2} N_s^2 M_s + \frac{1}{2} \omega_0^2 x_0^2 M_s \)

Velocity of the beam segments:

\(V_t = \frac{1}{2} (\frac{1}{2} \omega_0 x_0)^2 M_t + \frac{1}{8} \omega_0^2 x_0^2 M_t \)

Assume the mode shape is the same as the static displacement shape:

For segment AB

\(\hat{x}(y) = \frac{F_x}{48EI_2} (3Ly^2 - 2y^3) \quad 0 \leq y \leq L \quad 0 \)
Folded-Beam Suspension

Comb-Driven Folded Beam Actuator

\[\chi(y) = \frac{F_x}{48EI} \left(3Ly^2 - 2y^3 \right) \quad 0 \leq y \leq L \]

Case: \(y = 0 \) \(\chi(y=0) = 0 \)

Case: \(y \cdot L \leq L \) \(\chi(y \cdot L) = \frac{F_x}{48EI} \cdot \frac{L^3}{4L} \cdot \frac{L^2}{L^3} = 2k_{IC} \)
Get Kinetic Energies (cont)

At \(y = L \): \(\hat{x}(L) = \frac{X_0}{2} = \frac{F_x L^3}{4 \pi E I_z} \)

Substituting into (1):

\[
\hat{x}(y) = \frac{X_0}{2} \left[3 \left(\frac{L}{y}\right)^2 - 2 \left(\frac{L}{y}\right)^3 \right]
\]

Which yields for velocity:

\[
\sqrt{b}(y) \mid_{[AB]} = \frac{X_0}{2} \left[3 \left(\frac{L}{y}\right)^2 - 2 \left(\frac{L}{y}\right)^3 \right] \omega_0
\]

Plugging into the expression for \(KE_{b} \):

\[
KE_{[AB]} = \frac{1}{2} \int_0^L \frac{X_0^2 \omega_0^2}{4} \left[3 \left(\frac{L}{y}\right)^2 - 2 \left(\frac{L}{y}\right)^3 \right]^2 dM_{[AB]}
\]

[uniform material] \(\Rightarrow dM_{[AB]} = \frac{M_{[AB]}}{L} dy \)

\[
v = \frac{X_0^2 \omega_0^2 M_{[AB]}}{8L} \int_0^L \left[3 \left(\frac{L}{y}\right)^2 - 2 \left(\frac{L}{y}\right)^3 \right]^2 dy
\]

\[
KE_{[AB]} = \frac{13}{280} \frac{X_0^2 \omega_0^2 M_{[AB]}}{L^2}
\]
Get Kinetic Energies (cont)

For segment CD:

\[u_b(y) \bigg|_{CD} = X_0 \left[1 - \frac{3}{2} \left(\frac{y}{L} \right)^2 + \left(\frac{y}{L} \right)^3 \right] \omega_0 \]

Thus:

\[KE_{[CD]} = \frac{X_0^2 \omega_0^2 M_{[CD]}}{2L} \int_0^L \left[1 - \frac{3}{2} \left(\frac{y}{L} \right)^2 + \left(\frac{y}{L} \right)^3 \right] dy \]

\[KE_{[CD]} = \frac{83}{280} X_0^2 \omega_0^2 M_{[CD]} \]

Let \(M_b \) = total mass of the 8 beams.

Then:

\[M_{[AB]} = M_{[CD]} = \frac{1}{8} M_b \]

Thus:

\[KE_6 = 4 KE_{[AB]} + 4 KE_{[CD]} = \frac{6}{35} X_0^2 \omega_0^2 M_b \]

and

\[KE_{max} = X_0^2 \omega_0^2 \left[\frac{1}{2} M_s + \frac{1}{6} M_t + \frac{6}{35} M_b \right] \]

Folded-beam suspension

Shuttle w/ mass \(M_s \)

Folding truss w/ mass \(M_t \) \(\frac{1}{2} \)

Anchor \(h = \) thickness
Get Potential Energy & Frequency

Folded-beam suspension

Shuttle w/ mass M_s

Folding truss w/ mass $M_t/2$

Anchor

$h = \text{thickness}$

PE$_{\text{max}}$ is simply the work done to achieve maximum deflection:

$$PE_{\text{max}} = \frac{1}{2} k_x x_0^2$$

Thus, using Raleigh-Ritz:

$$KE_{\text{max}} = PE_{\text{max}}$$

$$x_0^2 \omega_0^2 \left[\frac{1}{2} M_s + \frac{1}{8} M_t + \frac{6}{35} M_b \right] = \frac{1}{2} k_x x_0$$

$$\omega_0 = \left[\frac{k_x}{M_{\text{eq}}} \right]^{\frac{1}{2}}$$

Where $M_{\text{eq}} = M_s + \frac{1}{8} M_t + \frac{12}{35} M_b$

(Resonance Frequency of a Folded-Beam Suspended Shuttle)