

EE C245 - ME C218 Introduction to MEMS Design Fall 2008

Prof. Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

Lecture 27: Noise & Integration

Lecture Outline

- * Reading: Senturia, Chpt. 16
- Lecture Topics:
 - ♦ Noise
 - **MEMS/Transistor Integration**
 - ∜ Wrap Up
 - Final Exam
 - ◆ Next Week

Noise

EE C245: Introduction to MEMS Design

UC Berkeley

Noise

- Noise: Random fluctuation of a given parameter I(t)
- In addition, a noise waveform has a zero average value

- We can't handle noise at instantaneous times
- But we can handle some of the averaged effects of random fluctuations by giving noise a power spectral density representation
- Thus, represent noise by its mean-square value:

Let
$$i(t) = I(t) - I_D$$

Then
$$\overline{i^2} = \overline{(I - I_D)^2} = \lim_{T \to \infty} \frac{1}{T} \int_0^T |I - I_D|^2 dt$$

Noise Spectral Density

• We can plot the spectral density of this mean-square value:

Circuit Noise Calculations

- Deterministic: $v_o(j\omega) = H(j\omega)v_i(j\omega)$
- Random: $S_o(\omega) = \left[H(j\omega)H^*(j\omega)\right]S_i(\omega) = \left|H(j\omega)\right|^2S_i(\omega)$ $\sqrt{S_o(\omega)} = \left|H(j\omega)\right|\sqrt{S_i(\omega)} \longrightarrow \text{How is it we can do this?}$ Root mean square amplitudes

Handling Noise Deterministically

* Can do this for noise in a tiny bandwidth (e.g., 1 Hz)

Can approximate this by a sinusoidal voltage generator (especially for small B, say 1 Hz)

[This is actually the principle by which oscillators work → oscillators are just noise going through a tiny bandwidth filter]

Why? Neither the amplitude nor the phase of a signal can change appreciably within a time period 1/B.

Systematic Noise Calculation Procedure

General Circuit With Several Noise Sources $\begin{array}{c|c} & H_2(j\omega) & H_5(j\omega) \\ \hline \hline v_{n2}^2 & \overline{v_{n3}^2} & \overline{v_{n5}^2} & \overline{v_{n6}^2} \\ \hline v_{n2}^2 & \overline{v_{n4}^2} & \overline{v_{n6}^2} & \overline{v_{n6}^2} \\ \hline & \overline{v_{n6}^2} & \overline{v_{n6}^2} & \overline{v_{n6}^2} \\ \hline \end{array}$

- Assume noise sources are uncorrelated
 - 1. For i_{n1}^2 , replace w/ a deterministic source of value

$$i_{n1} = \sqrt{\frac{\overline{i_{n1}^2}}{\Delta f}} \cdot (1 \text{ Hz})$$

Systematic Noise Calculation Procedure

- 2. Calculate $v_{on1}(\omega)=i_{n1}(\omega)H(j\omega)$ (treating it like a deterministic signal)
- 3. Determine $v_{on1}^2 = i_{n1}^2 \cdot \left| H(j\omega) \right|^2$ ______
- 4. Repeat for each noise source: i_{n1}^2 , v_{n2}^2 , $\overline{v_{n3}^2}$
- 5. Add noise power (mean square values)

$$\overline{v_{onTOT}^2} = \overline{v_{on1}^2} + \overline{v_{on2}^2} + \overline{v_{on3}^2} + \overline{v_{on4}^2} + \cdots$$

$$v_{onTOT} = \sqrt{\overline{v_{on1}^2 + \overline{v_{on2}^2 + \overline{v_{on3}^2 + \overline{v_{on4}^2 + \cdots}}}} + \cdots$$

Total rms value

Minimum Detectable Signal (MDS)

 Minimum Detectable Signal (MDS): Input signal level when the signal-to-noise ratio (SNR) is equal to unity

- * The sensor scale factor is governed by the sensor type
- The effect of noise is best determined via analysis of the equivalent circuit for the system

LF356 Op Amp Data Sheet

LF155/LF156/LF256/LF257/LF355/LF356/LF357 JFET Input Operational Amplifiers

General Description

These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BI-FET™ Technology). These amplifiers feature low input bias and offset currents/low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/f noise corner.

Features

Advantages

- Replace expensive hybrid and module FET op amps
- Rugged JFETs allow blow-out free handling compared with MOSFET input devices
- Excellent for low noise applications using either high or low source impedance—very low 1/f corner
- Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers
- New output stage allows use of large capacitive loads (5,000 pF) without stability problems
- Internal compensation and large differential input voltage capability

Applications

- Precision high speed integrators
- Fast D/A and A/D converters
- High impedance buffers
- Wideband, low noise, low drift amplifiers

- Logarithmic amplifiers
- Photocell amplifiers
- Sample and Hold circuits

Common Features

- Low input bias current: 30pA
- Low Input Offset Current: 3pA
- High input impedance: 10¹²O
- Low input noise current: 0.01 pA/√Hz
- High common-mode rejection ratio. 100 dB
- Large dc voltage gain: 106 dB

Uncommon Features

	LF155/ LF355	LF156/ LF256/ LF356	LF257/ LF357 (A _V =5)	Units
Extremely fast settling time to 0.01%	4	1.5	1.5	μs
■ Fast slew rate	5	12	50	V/µs
■ Wide gain bandwidth	2.5	5	20	MHz
■ Low input	20	12	12	nV/√Hz

= 0.01 pA/VHZ

voltage

Minimum Detectable Signal (MDS)

 Minimum Detectable Signal (MDS): Input signal level when the signal-to-noise ratio (SNR) is equal to unity

- * The sensor scale factor is governed by the sensor type
- The effect of noise is best determined via analysis of the equivalent circuit for the system

Move Noise Sources to a Common Point

UC Berkeley

- Move noise sources so that all sum at the input to the amplifier circuit (i.e., at the output of the sense element)
- * Then, can compare the output of the sensed signal directly to the noise at this node to get the MDS

Gyro Readout Equivalent Circuit ——(for a single tine)———

Gyro Sense Element
Output Circuit

Signal Conditioning Circuit (Transresistance Amplifier)

 Easiest to analyze if all noise sources are summed at a common node

Gyro Readout Equivalent Circuit (for a single tine)—

Gyro Sense Element
Output Circuit

Signal Conditioning Circuit (Transresistance Amplifier)

 $^{\bullet}$ Here, v_{eq}^2 and i_{eq}^2 are equivalent input-referred voltage and current noise sources

* Now, find the i_{eqTOT} entering the amplifier input:

sense element \rightarrow defermined entirely by the noise in $r_x \rightarrow f_{r_x}^2$ easiest to convert to an all electrical equiv. ckt.

UC Berkeley

Learn to get there from EE240.

or just get them from a data shoot ...

UC Berkeley

* First, find the rotation to i_o transfer function:

UC Berkeley

When Ω : Ω min = MOS, io: legtor—input-referred noise current embring the sense amplifier—in pA/VHZ

Easier to determine directional error as a function of elapsed time.

Sensing Circuits (cont)

UC Berkeley

To sense position (i.e., displacement), use a capacitive load

The Op Amp Integrator Advantage

Integration of MEMS and Transistors

EE C245: Introduction to MEMS Design Lecture 27 C. Nguyen 12/8/08

23

Merged MEMS/Transistor UC Berkeley Technologies (Process Philosophy) —

- Mixed:
 - \Rightarrow <u>problem</u>: multiple passivation/protection steps \Rightarrow large number of masks required
 - problem: custom process for each product
- MEMS-first or MEMS-last:
 - \Rightarrow adv.: modularity \Rightarrow flexibility \Rightarrow less development time
 - $4 \times adv$.: low pass./protection complexity \Rightarrow fewer masks

Analog Devices BiMEMS Process

- $^{\bullet}$ Interleaved MEMS and 4 μ m BiMOS processes (28 masks)
- Diffused n+ runners used to interconnect MEMS & CMOS
- * Relatively deep junctions allow for MEMS poly stress anneal
- Used to manufacture the ADXL-50 accelerometer and Analog Devices family of accelerometers

Analog Devices BiMEMS Process (cont)

• Examples:

C Berkeley

Old ------> New

• Can you list the advances in the process from old to new?

250 nm CMOS Cross-Section

Merged MEMS/Transistor UC Berkeley Technologies (Process Philosophy) —

• Mixed:

- problem: multiple passivation/protection steps ⇒ large number of masks required
- \$\frac{1}{2} \text{problem}: custom process for each product
- MEMS-first or MEMS-last:
 - \Rightarrow adv.: modularity \Rightarrow flexibility \Rightarrow less development time
 - $4 \times adv$.: low pass./protection complexity \Rightarrow fewer masks

MEMS-First Integration

* <u>Soln</u>.: build μmechanics in a trench, then planarize before circuit processing [Smith *et al*, IEDM'95]

MEMS-First Ex: Sandia's iMEMS

- Used to demonstrate functional fully integrated oscillators
- Issues:
 - \diamondsuit lithography and etching may be difficult in trench \rightarrow may limit dimensions (not good for RF MEMS)
 - $(>1000^{\circ}C) \rightarrow$ problem for some metal materials
 - \$\times\ \text{might be contamination issues for foundry IC's}

Bosch/Stanford MEMS-First Process

- UC Berkeley,
 - Single-crystal silicon microstructures sealed under epi-poly encapsulation covers
 - Many masking steps needed, but very stable structures

Merged MEMS/Transistor UC Berkeley Technologies (Process Philosophy) -

• Mixed:

- $\$ problem: multiple passivation/protection steps \Rightarrow large number of masks required
- problem: custom process for each product
- MEMS-first or MEMS-last:
 - \Rightarrow adv.: modularity \Rightarrow flexibility \Rightarrow less development time
 - $4 \times adv$.: low pass./protection complexity \Rightarrow fewer masks

Berkeley Polysilicon MICS Process

- Uses surface-micromachinedpolysilicon microstructures with silicon nitride layer between transistors & MEMS
 - \$\Polysilicon dep. T~600°C; nitride dep. T~835°C
 - \$1100°C RTA stress anneal for 1 min.
 - ♦ metal and junctions must withstand temperatures ~835°C
 - \$\times\text{tungsten metallization used with TiSi2 contact barriers}
 - \$\in situ doped structural polySi; rapid thermal annealing

Single-Chip Ckt/MEMS Integration

 Completely monolithic, low phase noise, high-Q oscillator (effectively, an integrated crystal oscillator)

* To allow the use of >600°C processing temperatures, tungsten (instead of aluminum) is used for metallization

Usable MEMS-Last Integration

- Problem: tungsten is not an accepted primary interconnect metal
- Challenge: retain conventional metallization
 - minimize post-CMOS processing temperatures
 - explore alternative structural materials (e.g., plated nickel, SiGe [Franke, Howe et al, MEMS'99])
 - $\$ Limited set of usable structural materials \rightarrow not the best situation, but workable

UCB Poly-SiGe MICS Process

* 2 µm standard CMOS process w/ Al metallization

 $^{\bullet}$ P-type poly-Si_{0.35}Ge_{0.65} structural material; poly-Ge

sacrificial material

• Process:

\$\to\$ Passivate CMOS w/ LTO @ 400°C

\$ Open vias to interconnect runners

♦ Deposit & pattern ground plane

\$RTA anneal to lower resistivity (550°C, 30s)

Wrap Up