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Quality Factor (or Q)
•Measure of the frequency 
selectivity of a tuned circuit

• Definition:

• Example: series LCR circuit

• Example: parallel LCR circuit
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Comb-Drive Resonator in Action

• Below: fully integrated micromechanical resonator oscillator 
using a MEMS-last integration approach
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Selective Low-Loss Filters: Need Q

• In resonator-based filters: high 
tank Q ⇔ low insertion loss

• At right: a 0.1% bandwidth, 3-
res filter @ 1 GHz (simulated)

heavy insertion loss for 
resonator Q < 10,000 -40
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•Main Function: provide a stable output frequency
• Difficulty: superposed noise degrades frequency stability
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Oscillator: Need for High Q

Higher QHigher Q
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• Problem: IC’s cannot achieve Q’s in the thousands
transistors consume too much power to get Q
on-chip spiral inductors Q’s no higher than ~10
off-chip inductors Q’s in the range of 100’s

•Observation: vibrating mechanical resonances Q > 1,000
• Example: quartz crystal resonators (e.g., in wristwatches)

extremely high Q’s ~ 10,000 or higher (Q ~ 106 possible)
mechanically vibrates at a distinct frequency in a 
thickness-shear mode

Attaining High Q
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Energy Dissipation and Resonator Q
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At high 
frequency, this is 
our big problem!

At high 
frequency, this is 
our big problem!
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Thermoelastic Damping (TED)

•Occurs when heat moves from compressed parts to tensioned 
parts → heat flux = energy loss
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ζ = thermoelastic damping factor
α = thermal expansion coefficient
T = beam temperature
E = elastic modulus
ρ = material density
Cp = heat capacity at const. pressure
K = thermal conductivity
f = beam frequency
h = beam thickness
fTED = characteristic TED frequency
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TED Characteristic Frequency

• Governed by
Resonator dimensions
Material properties

22 hC
Kf

p
TED ρ

π
=

ρ = material density
Cp = heat capacity at const. pressure
K = thermal conductivity
h = beam thickness
fTED = characteristic TED frequency
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[from Roszhart, Hilton Head 1990]

Peak where Q is minimizedPeak where Q is minimized
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Q vs. Temperature

Quartz Crystal Aluminum Vibrating Resonator

Q ~5,000,000 
at 30K

Q ~5,000,000 
at 30K

Q ~300,000,000 at 4KQ ~300,000,000 at 4K

Q ~500,000 
at 30K

Q ~500,000 
at 30K

Q ~1,250,000 at 4KQ ~1,250,000 at 4K

Even aluminum achieves 
exceptional Q’s at 

cryogenic temperatures

Even aluminum achieves 
exceptional Q’s at 

cryogenic temperatures

Mechanism for Q increase with 
decreasing temperature thought 
to be linked to less hysteretic 
motion of material defects 

less energy loss per cycle

Mechanism for Q increase with 
decreasing temperature thought 
to be linked to less hysteretic 
motion of material defects 

less energy loss per cycle

[from Braginsky, 
Systems With 

Small Dissipation]

EE C245: Introduction to MEMS Design LecM 7 C. Nguyen 9/28/07 39

Output

Input

Input

Output

Support 
Beams

Wine Glass 
Disk Resonator

R = 32 μm

Anchor

Anchor

Resonator Data
R = 32 μm, h = 3 μm
d = 80 nm, Vp = 3 V

Resonator Data
R = 32 μm, h = 3 μm
d = 80 nm, Vp = 3 V

-100

-80

-60

-40

61.325 61.375 61.425

fo = 61.37 MHz
Q = 145,780

Frequency [MHz]

U
nm

at
ch

ed
 T

ra
ns

m
is

si
on

 [d
B

]

Polysilicon Wine-Glass Disk Resonator

[Y.-W. Lin, Nguyen, JSSC Dec. 04]

Compound 
Mode (2,1)
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1.51-GHz, Q=11,555 Nanocrystalline
Diamond Disk μMechanical Resonator

• Impedance-mismatched stem for 
reduced anchor dissipation

•Operated in the 2nd radial-contour mode
•Q ~11,555 (vacuum); Q ~10,100 (air)
• Below: 20 μm diameter disk
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Design/Performance:
R=10μm, t=2.2μm, d=800Å, VP=7V
fo=1.51 GHz (2nd mode), Q=11,555

fo = 1.51 GHz
Q = 11,555 (vac)
Q = 10,100 (air)

[Wang, Butler, Nguyen MEMS’04]

Q = 10,100 (air)
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Disk Resonator Loss Mechanisms

Disk Stem
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MEMS Material Property Test 
Structures

EE C245: Introduction to MEMS Design LecM 7 C. Nguyen 9/28/07 43

Stress Measurement Via Wafer Curvature

• Compressively stressed film →
bends a wafer into a convex 
shape

• Tensile stressed film → bends 
a wafer into a concave shape

• Can optically measure the 
deflection of the wafer 
before and after the film is 
deposited

• Determine the radius of 
curvature R, then apply:
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σ = film stress [Pa]
E′ = E/(1-ν) = biaxial elastic modulus [Pa]
h = substrate thickness [m]
t = film thickness
R = substrate radius of curvature [m]
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MEMS Stress Test Structure

• Simple Approach: use a clamped-
clamped beam

Compressive stress causes 
buckling
Arrays with increasing length 
are used to determine the 
critical buckling load, where

Limitation: Only compressive 
stress is measurable

2

22

3 L
Eh

critical
πσ −=

E = Young’s modulus [Pa]
I = (1/12)Wh3 = moment of inertia
L, W, h indicated in the figure

L

W

h = thickness
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More Effective Stress Diagnostic

• Single structure measures both 
compressive and tensile stress

• Expansion or contraction of test 
beam → deflection of pointer

• Vernier movement indicates 
type and magnitude of stress

Expansion → Compression

Contraction → Tensile
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Q Measurement Using Resonators

[Y.-W. Lin, Nguyen, JSSC Dec. 04]

Compound 
Mode (2,1)
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Folded-Beam Comb-Drive Resonator

• Issue w/ Wine-Glass Resonator: non-standard fab process
• Solution: use a folded-beam comb-drive resonator

8.3 Hz

3.8
500,342

=Q

fo=342.5kHz
Q=41,000
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Comb-Drive Resonator in Action

• Below: fully integrated micromechanical resonator oscillator 
using a MEMS-last integration approach
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Folded-Beam Comb-Drive Resonator

• Issue w/ Wine-Glass Resonator: non-standard fab process
• Solution: use a folded-beam comb-drive resonator

8.3 Hz

3.8
500,342

=Q

fo=342.5kHz
Q=41,000
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Measurement of Young’s Modulus

• Use micromechanical resonators
Resonance frequency depends on E
For a folded-beam resonator: 213)(4

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

eq
o M

LWEhfResonance Frequency =

L
W

h = thickness

Young’s modulus

Equivalent mass

• Extract E from 
measured frequency fo

•Measure fo for several 
resonators with varying 
dimensions

• Use multiple data points 
to remove uncertainty 
in some parameters
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Anisotropic Materials
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Elastic Constants in Crystalline Materials

• Get different elastic constants in different crystallographic 
directions → 81 of them in all

Cubic symmetries make 60 of these terms zero, leaving 
21 of them remaining that need be accounted for

• Thus, describe stress-strain relations using a 6x6 matrix
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Stiffness Coefficients of Silicon

• Due to symmetry, only a few of the 21 coefficients are 
non-zero

•With cubic symmetry, silicon has only 3 independent 
components, and its stiffness matrix can be written as:
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where
C11 = 165.7 GPa
C12 = 63.9 GPa
C44 = 79.6 GPa
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Young’s Modulus in the (001) Plane

[units = 100 GPa]
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Poisson Ratio in (001) Plane
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Anisotropic Design Implications

• Young’s modulus and Poisson ratio 
variations in anisotropic materials 
can pose problems in the design 
of certain structures

• E.g., disk or ring resonators, 
which rely on isotropic properties 
in the radial directions

Okay to ignore variation in RF 
resonators, although some Q 
hit is probably being taken

• E.g., ring vibratory rate 
gyroscopes

Mode matching is required, 
where frequencies along 
different axes of a ring must 
be the same
Not okay to ignore anisotropic 
variations, here Ring Gyroscope
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