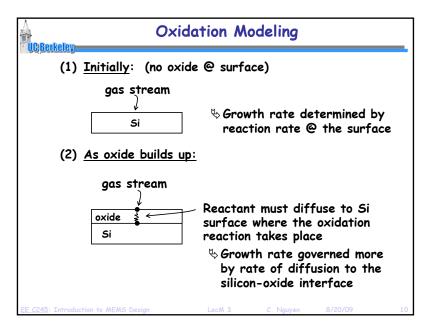
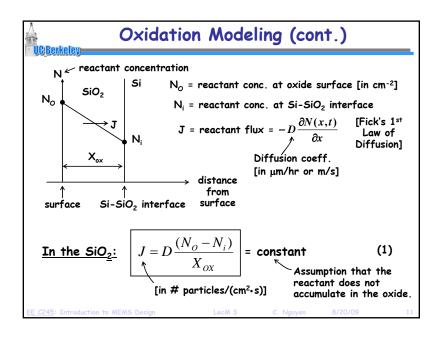
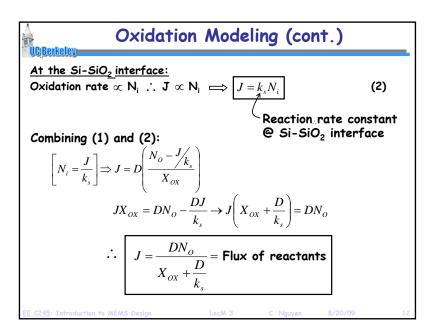
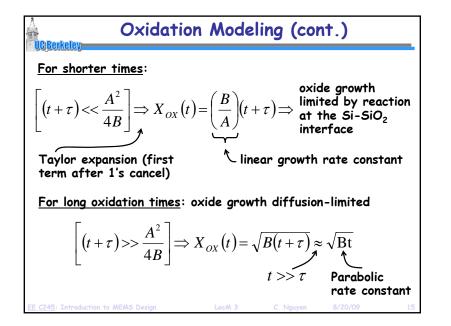
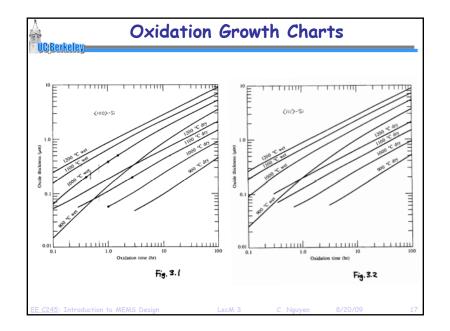

Copyright @ 2010 Regents of the University of California







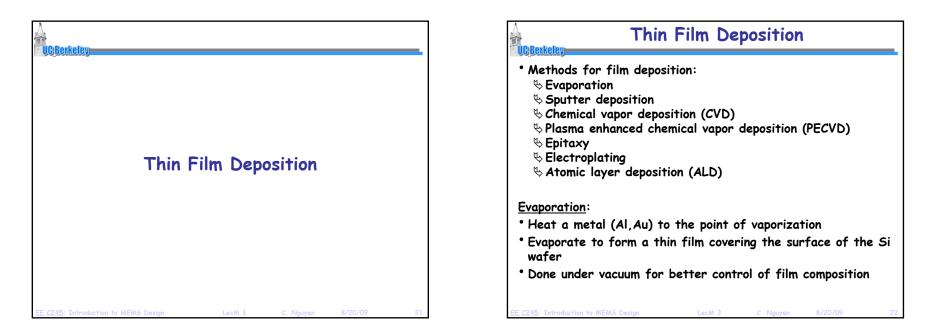


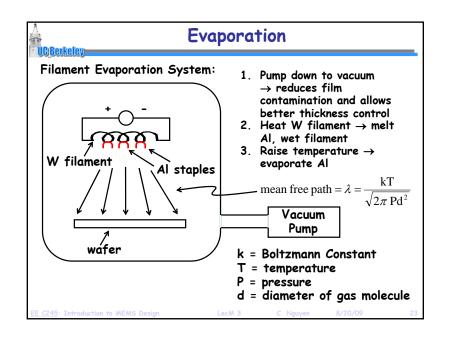


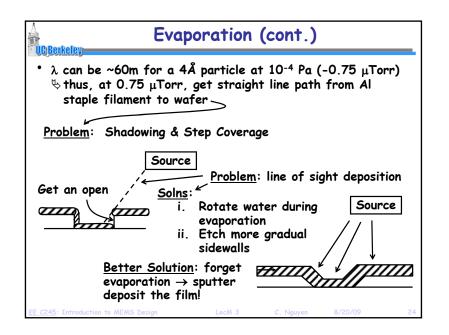
Oxidation Modeling (cont.)					
Find an expression for $X_{OX}(t)$:	oxidizing flux				
Rate of change of oxide layer thickness w/time $= \frac{dX_{OX}}{dt}$	$= \frac{J}{M} = \frac{DN_o/M}{X_{ox} + D/k_s} $ (3)				
# of molecules of oxidizing species incorporated into a unit volume of oxide $\begin{cases} = 2.2 \times 10^{22} cm^{-3} & \text{for } O_2 \\ = 4.4 \times 10^{22} cm^{-3} & \text{for } H_2 O \end{cases}$					
Solve (3) for $X_{_{O\!X}}(t)$: [Initial con	ndition $X_{OX}(t=0) = X_i$]				
$\frac{dX_{OX}}{dt} = \frac{DN_O/M}{X_{OX} + D/k_s} \text{as } \int_{X_i}^{X_{OX}} (X_{OX} + D/k_s) $	$+ \frac{D}{k_s} \bigg) dX_{OX} = \int_0^t \frac{DN_O}{M} dt$				
EE C245: Introduction to MEMS Design LecM 3	C. Nguyen 8/20/09 13				

Oxide Thickness Versus Time				
Result:additional time required (to go from $X_i \rightarrow X_{OX}$ time required to grow X_i $[X_i = initial oxide thickness]$				
$X_{OX}(t) = \frac{A}{2} \left\{ \left[1 + \frac{4B}{A^2}(t+\tau) \right]^{\frac{1}{2}} - 1 \right\}$				
where $A = \frac{2D}{k_s}$				
$B = \frac{2DN_o}{M} \qquad D = D_o \exp\left(-\frac{E_A}{kT}\right)$				
i.e., D governed by an Arrhenius relationship \rightarrow temperature dependent EE C245: Introduction to MEMS Design Leck 3 C. Neuven 8/20/09 14				

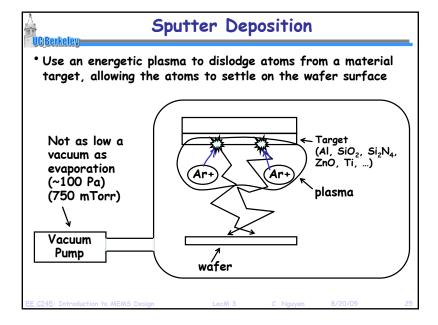
Table 6–2	Rate constants describing (111) silicon oxidation kinetics at 1 Atm total pressure. For the corresponding values for (100) silicon, all C ₂ values should be divided by 1.68.		
Ambient	В	B/A	
Dry O ₂	$C_1 = 7.72 \times 10^2 \mu \mathrm{m}^2 \mathrm{hr}^{-1}$	$C_2 = 6.23 \times 10^6 \mu\mathrm{m}\mathrm{hr}^{-1}$	
		$E_2 = 2.0 \mathrm{eV}$	
Wet O ₂	$C_1 = 2.14 \times 10^2 \mu \mathrm{m}^2 \mathrm{hr}^{-1}$	$C_2 = 8.95 \times 10^7 \mu\mathrm{m}\mathrm{hr}^{-1}$	
	$E_1=0.71~{\rm eV}$	$E_2 = 2.05 \text{ eV}$	
H₂O	$C_1 = 3.86 \times 10^2 \mu \mathrm{m}^2 \mathrm{hr}^{-1}$	$C_2 = 1.63 \times 10^8 \mu\mathrm{m}\mathrm{hr}^{-1}$	
	$E_1 = 0.78 \text{ eV}$	$E_2 = 2.05 \text{ eV}$	
in prac	ry is great but usually, ctice, since measured dat oxidation growth charts o	a is available	

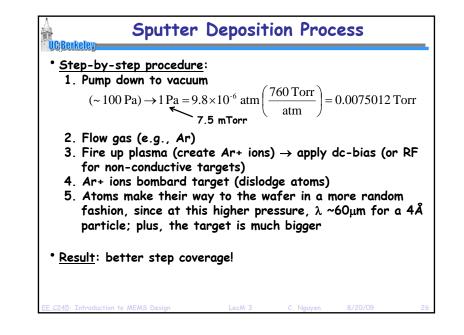


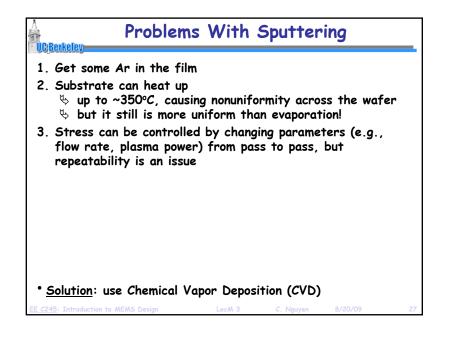

Factors	Affectin	g Oxido	ation	
• In summary, oxide thicl	kness is dep	endent upo	n:	
1. Time of oxidation				
2. Temperature of oxid				
3. Partial pressure of	oxidizing spe	ecies ($\propto N_a$)	
 Also dependent on: 				
4 Reactant type:				
Dry O ₂				
Water vapor ⇒ fas	ter oxidatio	on, since wa	ater has a	
higher so	lubility (i.e.	, D) in SiC	P_2 than O_2	
5. Crystal orientation:				
×111> ← faster, b available	ecause ther at the Si-s		bonds	
<100> ← fewer int unsatisfic	erface trap ed Si-bonds			face
EE C245: Introduction to MEMS Design	LecM 3	C. Nguyen	8/20/09	19

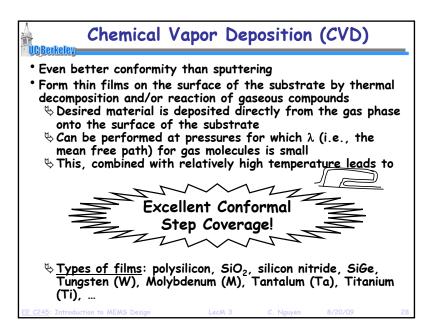


A UC Berke	Factors	Affectin	g Oxido	ition	
6.	Impurity doping: P: increases linear in no affect on para faster initial grow B: no effect on line increases parabol faster growth ov	abolic rate c wth → surfa ar rate cons lic rate cons	ce reactior st. st.		
<u>EE C245</u> : In	stroduction to MEMS Design	LecM 3	C. Nguyen	8/20/09	20

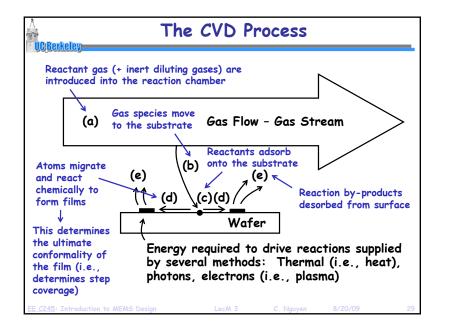

EE 245: Introduction to MEMS Lecture 5m: Process Modules I







Copyright @ 2010 Regents of the University of California



Copyright @ 2010 Regents of the University of California

