EE 245: Introduction to MEMS Lecture 6m1: Oxidation & Film Deposition

1













## *C*TN 9/14/10

#### <u>EE 245</u>: Introduction to MEMS Lecture 6m1: Oxidation & Film Deposition

### CTN 9/14/10



























| Silicon Nitride CVD                                                                                                                                |    |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| Silicon Nitride Deposition:                                                                                                                        |    |  |  |  |  |  |
| • First, note that thermal growth is possible:<br>Si in NH <sub>3</sub> @ 1000-1100°C                                                              |    |  |  |  |  |  |
| <ul> <li>But very slow growth rate, thus, impractical</li> <li>LPCVD reactions:</li> </ul>                                                         |    |  |  |  |  |  |
| $700-900^{\circ}C$<br><u>Silane reaction:</u> $3SiH_4 + 4NH_3 \longrightarrow Si_3N_4 + 12H_2$<br>(Atm. Press.)<br><u>Dichlorosilane reaction:</u> |    |  |  |  |  |  |
| $3SiCl_{2}H_{2} + 4NH_{3} \xrightarrow{700-800^{\circ}C} Si_{3}N_{4} + 6HCI + 6H_{2}$                                                              |    |  |  |  |  |  |
| (Increase and T = $835^{\circ}C \longrightarrow Si$ rich nitride $\longrightarrow$ low stress                                                      |    |  |  |  |  |  |
| <u>Problem:</u> Clobbers your pumps! Expensive to maintain!                                                                                        |    |  |  |  |  |  |
| E C245: Introduction to MEMS Design LecM 3 C. Nguyen 8/20/09                                                                                       | 24 |  |  |  |  |  |









































| ALD Versus CVD                                              |                                                              |  |  |  |  |  |  |
|-------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|--|
| ALD                                                         | CVD                                                          |  |  |  |  |  |  |
| Highly reactive precursors                                  | Less reactive precursors                                     |  |  |  |  |  |  |
| Precursors react separately on the substrate                | Precursors react at the same<br>time on the substrate        |  |  |  |  |  |  |
| Precursors must not decompose<br>at process temperature     | Precursors can decompose at process temperature              |  |  |  |  |  |  |
| Uniformity ensured by the saturation mechanism              | Uniformity requires uniform flux of reactant and temperature |  |  |  |  |  |  |
| Thickness control by counting the number of reaction cycles | Thickness control by precise process control and monitoring  |  |  |  |  |  |  |
| Surplus precursor dosing acceptable                         | Precursor dosing important                                   |  |  |  |  |  |  |

| ALD Versus Other Deposition Methods |      |      |        |         |        |        |  |  |
|-------------------------------------|------|------|--------|---------|--------|--------|--|--|
| Method                              | ALD  | MBE  | CVD    | Sputter | Evapor | PLD    |  |  |
| Thickness Uniformity                | Good | Fair | Good   | Good    | Fair   | Fair   |  |  |
| Film Density                        | Good | Good | Good   | Good    | Poor   | Good   |  |  |
| Step Coverage                       | Good | Poor | Varies | Poor    | Poor   | Poor   |  |  |
| Inteface Quality                    | Good | Good | Varies | Poor    | Good   | Varies |  |  |
| Number of Materials                 | Fair | Good | Poor   | Good    | Fair   | Poor   |  |  |
| Low Temp.<br>Deposition             | Good | Good | Varies | Good    | Good   | Good   |  |  |
| Deposition Rate                     | Fair | Poor | Good   | Good    | Good   | Good   |  |  |
| Industrial Apps.                    | Good | Fair | Good   | Good    | Good   | Poor   |  |  |





