

III. Photoresist (optical)					
<u>Mechanism:</u>	<u>Negative</u> photoactivation ↓ Polymerization (long, linked Carbon chains) ↓ Developer solvent removes unexposed PR	Positive photoactivation ↓ Converts exposed PR to organic acid ↓ Alkaline developer (e.g.,kOH) removes acid			
EE C245: Introduction to ME	MS Design LecM 4	C. Nguyen 8/20/09 10			

Film Etch Chemistries						
For some p	opular films:					
Material	Wet etchant	Etch rate [nm/min]	Dry etchant	Etch rate [nm/min]		
Polysilicon	HNO ₃ :H ₂ O: NH ₄ F	120-600	SF ₆ + He	170-920		
Silicon nitride	H ₃ PO ₄	5	SF ₆	150-250		
Silicon dioxide	HF	20-2000	CHF ₃ + O ₂	50-150		
Aluminum	H ₃ PO ₄ :HNO ₃ : CH ₃ COOH	660	Cl ₂ + SiCl ₄	100-150		
Photoresist	Acetone	>4000	O ₂	35-3500		
Gold	КІ	40	n/a	n/a		

CTN 9/14/10

CTN 9/14/10

CTN 9/14/10

CTN 9/14/10

Successive Diffusions
 For actual processes, the junction/diffusion formation is only one of many high temperature steps, each of which contributes to the final junction profile Typical overall process: Selective doping Implant → effective (Dt)₁ = (ΔR_p)²/2 (Gaussian) Drive-in/activation → D₂t₂ Other high temperature steps (eg., oxidation, reflow, deposition) → D₃t₃, D₄t₄, Each has their own Dt product Then, to find the final profile, use
$(Dt)_{tot} = \sum_{i} D_{i}t_{i}$
in the Gaussian distribution expression.
EE C245: Introduction to MEMS Design Leck 4 C. Nguyen 8/20/09 7

Il Parkelow	The Di	ffusion	Coefficient
D = D	$_{o}\exp\left(-\frac{E_{A}}{kT}\right)$	(as usual	, an Arrhenius relationship)

Table 4.1	Typical Diffusion	n Coefficient	Values	for a	Number	of	Impurities
Table 4.1	Typical Dillusio	Coefficient	values	ior a	Number	of	Impuritie

Element	$D_0(\mathrm{cm}^2/\mathrm{sec})$		$E_{\rm A}({\rm eV})$	
В	10.5		3.69	
Al	8.00		3.47	
Ga	3.60		3.51	
In	16.5		3.90	
Р	10.5		3.69	
As	0.32		3.56	
Sb	5.60		3.95	
245: Introduction to MEMS Design	LecM 4	C Nauven	8/20/09	7

