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Shear Strain Energy w  Applying the Principle of Virtual Work
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* Basic Procedure:
% Guess the form of the beam deflection under the applied

,}..

loads
}EL) s .;' % Vary the parameters in the beam deflection function in
wm I e dx order to minimize:
4(‘ Wh o d. Assumes
/ - Sum strain energles pomf load
Shear Modulus
U= ZW Z F u
* See W.C. Albert, "Vibrating Quartz Crystal Beam

i Dlsplacemenf
at point load

Accelerometer,” Proc. ISA Int. Instrumentation Symp., May

1982, pp. 33-44
% Find minima by simply setting derivatives to zero

* See Senturia, pg. 244, for a general expression with
distrubuted surface loads and body forces

Strain Energy And Work By F
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* Objective: Find an expression for displacement as a function

of location x under a point load F applied at the tip of the U=%W,_,—F ¥L)

free end of a cantilever with tapered width W(x)

& Example: Tapered Cantilever Beam
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d 'P] dx (Bending Energy)
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Top view of cantilever's Wix)
will e Wi = Wﬂ_ﬂ.
50% taper €
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/.; 4 / \ Y ¥ (Using our guess)
T = F N W) =W(a-=) e
y(X) =CyX" +C5X 2L, Tip Deflection
/ 2

* Start by guessing the solution ———

% It should satisfy the boundary conditions

% The strain energy integrals shouldn't be too tedious

* This might not matter much these days, though, since
one could just use matlab or mathematica

1 -
=L Ewns (-2, +6exf dr—FleL +e. L)
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i Find ¢, and c; That Minimize U & Minimize U (cont)
L Y U B
* Minimize U — basically, find the c, and c; that brings U * Evaluate the derivatives and set to zero:
closest to zero (which is what it would be if we had guessed
correctly) at EWH® N, 2 [ EWR :
* The ¢, and c; that minimize U are the ones for which the 3 =0= 3 e-F L+ 4 )
partial derivatives of U with respective to them are zero: 2
ol 3 N, s [ EWKE >
a7 s —=0=|ZEWh’e,-F L'+ e, IL°
—= —=0 de, 8 3 -
de, de,
« Proceed: Solve the simultaneous equations to get ¢, and c;:
% First, evaluate the integral to get an expression for U:
841 FL, 24y F
3 5‘»— ) €= 73 [zmwns S=1 73 7wm?
U =EWk L, +25 L’ +2 [—F nLE oL, 13 |EWh 13 | EWh
& The Virtual Work-Derived Solution %  Comparison With Finite Element Simulation
[ UcBerkeley 1) ),
* And the solution: * Below: ANSYS finite element model with

L = 500 pm W, = 20 pm E = 170 GPa
o= [135%31 )L'_a} h=2um W, =10 um

* Solve for tip deflection and obtain the spring constant:

. 13EWH°
WL)= [135%31 ]k k =F/y(L,)= [ - ]

* Compare with previous solution for constant-width cantilever
beam (using Euler theory):

4F 3 13% smaller than
"P{L‘,} _[ EWh’ ]Lf tapered-width case

° Result: (from static
analysis)
Lk = 0.471 pN/m
* This matches the
result from energy
minimization to 3
significant figures
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i Need a Better Approximation?
B )
* Add more terms to the polynomial

* Add other strain energy terms:
% Shear: more significant as the beam gets shorter
% Axial: more significant as deflections become larger

* Both of the above remedies make the math more complex,
so encourage the use of math software, such as
Mathematica, Matlab, or Maple

* Finite element analysis is really just energy minimization

* If this is the case, then why ever use energy minimization
analytically (i.e., by hand)?
% Analytical expressions, even approximate ones, give

insight into parameter dependencies that FEA cannot

% Can compare the importance of different terms
% Should use in tandem with FEA for design

Copyright © 2011 Regents of the University of California



