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* Use of comb-capacitive tranducers brings many benefits

% Linearizes voltage-generated input forces

% (Ideally) eliminates dependence of frequency on dc-bias

% Allows a large range of motion ﬁy Stator  Rotor
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A Comb-Drive Force With % Capacitance Expressions
“Ueserkeleymmm Ground Plane Correction s " UGBerkeley -
* Finger displacement changes not only the capacitance *Case: V. =V, = OV ;
between stator and rotor, but also between these structures * C,, depends on whether or not ¥ ;
and the ground plane — modifies the capacitive energy fmge,-s are engaged
. AW 1dC, 1 dC, 1dC,_ ., >
F o=——=-—2yty__2p? + s Lt Ce =N[C, x+C,, (L-x

[Gary Fedder, Ph.D.,

ground plane () UC Berkeley, 1994] [Gary Fedder, Ph.D., UC Berkeley, 1994]
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5 Comb-Drive Force With %  Simulate to Get Capacitors —> Force
" UpBerkeleymmm Ground Plane Correction UGBerkeley
* Finger displacement changes not only the capacitance * Below: 2D finite element simulation
between stator and rotor, but also between these structures
and the ground plane — modifies the capacitive energy
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i Vertical Force (Levitation) @ Simulated Levitation Force
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L p % X * Below: simulated vertical force F, vs. z at
TN ANH Y O\ - - different V,'s [f/ Bill Tang Ph.D., UCB, 1990]
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i Vertical Resonance Frequency & Suppressing Levitation
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* Pattern ground plane polysilicon into differentially excited
electrodes to minimize field lines terminating on top of comb
Applind woltage ¥ * Penalty: x-axis force is reduced
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= Force of Comb-Drive vs. Parallel-Plate
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