

slowest step controls

rate of reaction

**Reading: Senturia Chpt. 3, Jaeger Chpt. 11, Handouts: "Bulk Micromachining of Silicon" **Lecture Topics: **Bulk Micromachining **Anisotropic Etching of Silicon **Boron-Doped Etch Stop **Electrochemical Etch Stop **Jisotropic Etching of Silicon **Deep Reactive Ion Etching (DRIE)

\$ Etch depth and uniformity

roughness after etching)

Surface roughness (e.g., sidewall

Process compatiblity (w/ existing layers)
 Safety, cost, availability, environmental impact

Other Anisotropic Silicon Etchants

- TMAH, Tetramethyl ammonium hydroxide, 10-40 wt.% (90°C)

 - ♦ Al safe, IC compatible
 - \$ Etch ratio (100)/(111) = 10-35
 - Etch masks: SiO₂ , Si3N₄ ~ 0.05-0.25 nm/min
 - ♦ Boron doped etch stop, up to 40× slower
- EDP (115°C)
 - & Carcinogenic, corrosive
 - \$ Etch rate (100) = 0.75 μm/min
 - ⋄ Al may be etched
 - **⇔** R(100) > R(110) > R(111)
 - \$ Etch ratio (100)/(111) = 35
 - ⇔ Etch masks: SiO₂ ~ 0.2 nm/min, Si₃N₄ ~ 0.1 nm/min
 - ♦ Boron doped etch stop, 50× slower

<u>EE C245</u>: Introduction to MEMS Design

есМ б

9/28/07