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i Q Measurement Using Resonators "

UGBerkeley

Folded-Beam Comb-Drive Resonator

-, — * Issue w/ Wine-Glass Resonator: non-standard fab process
@ 49 —f,=6137 MHz— . — ;
Compound 3 Q = 145,780 Solution: use a folded-beam comb-drive resonator
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@ Comb-Drive Resonator in Action i Folded-Beam Comb-Drive Resonator
-~ UBBerkelcy " UGBerkeley
* Below: fully integrated micromechanical resonator oscillator * Issue w/ Wine-Glass Resonator: non-standard fab process
using a MEMS-last integration approach * Solution: use a folded-beam comb-drive resonator
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W Measurement of Young's Modulus
UG Btk ey
* Use micromechanical resonators

% Resonance frequency depends on E Young's modulus

% For a folded-beam resonator: 2 12
4Eh(W/L)
Resonance Frequency = f, = M.
h = thickness 7‘ .
l p— Equivalent mass
W
IL * Extract E from
L LN I measured frequency f,
| = * Measure f, for several
| | resonators with varying
dimensions
* Use multiple data points

to remove uncertainty
in some parameters

|
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Anisotropic Materials

% Elastic Constants in Crystalline Materials
R
* Get different elastic constants in different crystallographic

directions —» 81 of them in all
% Cubic symmetries make 60 of these terms zero, leaving
21 of them remaining that need be accounted for

* Thus, describe stress-strain relations using a 6x6 matrix

Oy Cu Cp Ci Cy Cis Cp || &

y Cio Cpn Cyp Cy Cui Cypf| &y
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® Stiffness Coefficients of Silicon
T UG B —
* Due to symmetry, only a few of the 21 coefficients are
non-zero

* With cubic symmetry, silicon has only 3 independent
components, and its stiffness matrix can be written as:

X Cu Cp Cy 0 0 0 &y
y Cno Cxp Cypy O 0
z Cis Cy Cy3 O 0
Ty, 0 0 0 C, O

T, 0 0 0 0 Cix O Vax
Tyy 0 0 0 0 0 Cel|7x]

o O O
~N

C,y = 165.7 GPa
where C,, = 63.9 GPa
Caq = 79.6 GPa
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,? Young's Modulus in the (001) Plane % Poisson Ratio in (001) Plane
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& Anisotropic Design Implications
UG QML@\;—

* Young's modulus and Poisson ratio
variations in anisotropic materials
can pose problems in the design
of certain structures

* E.g., disk or ring resonators,
which rely on isotropic properties
in the radial directions

% Okay to ignore variation in RF
resonators, although some Q
hit is probably being taken

* E.g., ring vibratory rate
gyroscopes

% Mode matching is required,
where frequencies along
different axes of a ring must
be the same

% Not okay to ignore anisotropic
variations, here Ring Gyroscope

Wine-6Glass
~ Mode Disk
! ]
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