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Electrostatic Comb Drive

• Use of comb-capacitive tranducers brings many benefits
Linearizes voltage-generated input forces
(Ideally) eliminates dependence of frequency on dc-bias
Allows a large range of motion

Comb-Driven Folded Beam Actuator
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Typical Drive & Sense Configuration
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Comb-Drive Force Equation (2nd Pass)
• In our 1st pass, we accounted for

Parallel-plate capacitance between stator and rotor
• … but neglected:

Fringing fields
Capacitance to the substrate

• All of these capacitors must be included when evaluating the 
energy expression!

Stator Rotor

Ground 
Plane
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• Finger displacement changes not only the capacitance 
between stator and rotor, but also between these structures 
and the ground plane → modifies the capacitive energy

Comb-Drive Force With 
Ground Plane Correction

[Gary Fedder, Ph.D., 
UC Berkeley, 1994]
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Capacitance Expressions

• Case: Vr = VP = 0V
• Csp depends on whether or not 
fingers are engaged

[Gary Fedder, Ph.D., UC Berkeley, 1994]

Region 2 Region 3

Capacitance per 
unit length
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• Finger displacement changes not only the capacitance 
between stator and rotor, but also between these structures 
and the ground plane → modifies the capacitive energy

Comb-Drive Force With 
Ground Plane Correction

[Gary Fedder, Ph.D., UC Berkeley, 1994]
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Simulate to Get Capacitors → Force

• Below: 2D finite element simulation

20-40% reduction of Fe,x
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Vertical Force (Levitation)

• For Vr = 0V (as shown):
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Simulated Levitation Force

• Below: simulated vertical force Fz vs. z at 
different VP’s [f/ Bill Tang Ph.D., UCB, 1990] 

See that Fz is roughly proportional to –z for z 
less than zo
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→ it’s like an electrical stiffness 
that adds to the mechanical 
stiffness

Electrical 
Stiffness
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Vertical Resonance Frequency

• Signs of electrical 
stiffnesses in MEMS:
Comb (x-axis) → ke = 0
Comb (z-axis) → ke > 0
Parallel Plate → ke < 0
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Suppressing Levitation

• Pattern ground plane polysilicon into differentially excited 
electrodes to minimize field lines terminating on top of comb

• Penalty: x-axis force is reduced
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Force of Comb-Drive vs. Parallel-Plate

• Comb drive (x-direction)
V1 = V2 = VS = 1V

• Differential Parallel-Plate        
(y-direction)

V1 = 0V, V2 = 1V

Parallel-plate 
generates a 
much larger 
force; but at 
the cost of 
linearity


