EE247
Lecture 5

• Summary last lecture
• Continuous-time filters
 – Facts about monolithic Rs & Cs and its effect on integrated filter characteristics
 – Opamp MOSFET-C filters
 – Opamp MOSFET-RC filters
 – Gm-C filters
• Frequency tuning for continuous-time filters
 – Trimming
 – Automatic frequency tuning
 • Continuous tuning
 • Periodic tuning

Summary Last Lecture

• High Q high order filters
 – Transmission zero implementation
 – Example
• Various integrator topologies utilized in monolithic filters
 – Resistor + C based filters
 – Transconductance (gm) + C based filters
 – Switched-capacitor filters
• Effect of integrator non-idealities on filter behavior
Summary Last Lecture
Transmission zero Implementation for Integrator Based Ladder Filters

- Use KCL & KVL to derive:

\[V_2 = \frac{I_1 - I_3}{s(C_1 + C_a)} + \frac{C_a}{C_1 + C_a} \]

\[V_4 = \frac{I_3 - I_5}{s(C_3 + C_a)} + \frac{C_a}{C_3 + C_a} \]

Voltage Controlled Voltage Source!

- Replace shunt capacitor with voltage controlled voltage sources:

\[V_2 = \frac{I_1 - I_3}{s(C_1 + C_a)} + V_4 \frac{C_a}{C_1 + C_a} \]

\[V_4 = \frac{I_3 - I_5}{s(C_3 + C_a)} + V_2 \frac{C_a}{C_3 + C_a} \]
Summary Last Lecture
Integrator Based Ladder Filters
Transmission zeros

Transmission zeros implemented with coupling capacitors
Summary Last Lecture
Effect of Integrator Non-Idealities on Filter Performance

\[V_i = -\frac{I}{sRC} = -\frac{s}{s} \]

\[H(s) = \frac{-\omega_o}{s} \]

\[H(s) = \frac{-\omega_o}{s + \frac{s}{\omega_o}} \]

\[-90^\circ \]

\[\omega_o \]

\[-90^\circ \]

Effect of Integrator Finite DC Gain on Q

\[\omega_o \]

\[P1 = \frac{\omega}{a} \]

\[\arctan \left(\frac{P1}{\omega_0} \right) \]

\[-90^\circ \]

\[\omega \]

\[-\frac{\pi}{2} + \arctan \left(\frac{P1}{\omega_0} \right) \]

Example: \(P1/\omega_0 = 1/a = 1/100 \)
Effect of Integrator Finite DC Gain on Overall Filter Frequency Response

- Phase lead @ \(\omega_0 \)
 \(\rightarrow \) Droop in the passband

Effect of Integrator Non-Dominant Poles

Example: \(\omega_0 / P = 1 / 100 \)
Effect of Integrator Non-Dominant Poles on Overall Filter Frequency Response

- Phase lag @ ω_0
 - Peaking in the passband
 - In extreme cases could result in oscillation!

Effect of Integrator Non-Dominant Poles & Finite DC Gain on Q

$\angle = -\pi/2 + \arctan \frac{P_1}{\omega_0}$

Note that the two terms can cancel each other’s effect.
Summary

Effect of Integrator Non-Idealities on Q

- Amplifier DC gain reduces the overall Q in the same manner as series/parallel resistance associated with passive elements.
- Amplifier poles located above integrator unity-gain frequency enhance the Q!
 - If non-dominant poles close to unity-gain freq. → Oscillation
- Depending on the location of unity-gain frequency, the two terms can cancel each other out!

\[
\begin{align*}
Q_{\text{ideal}}^{\text{int}} &= \infty \\
Q_{\text{real}}^{\text{int}} &= \frac{1}{\frac{1}{\omega_0} \sum_{i=1}^{\infty} \frac{1}{\omega_i}} \\
\text{Phase lead @ } \omega_0 &\quad \text{Phase lag @ } \omega_0
\end{align*}
\]

Few Facts About Monolithic Rs & Cs & Gms

- Monolithic continuous-time filter critical frequency set by \(RxC \) or \(GmxC \)
- Absolute value of integrated \(Rs \) & \(Cs \) & \(Gms \) are quite variable
 - \(Rs \) vary due to doping and etching non-uniformities
 - Could vary by as much as \(-30\text{ to }40\%\) due to process & temperature variations
 - \(Cs \) vary because of oxide thickness variations and etching inaccuracies
 - Could vary \(-10\text{ to }15\%\)
 - \(Gms \) typically function of mobility, oxide thickness, current, device geometry …
 - Could vary \(>\text{ to }<40\%\) or more with process & temp. & supply voltage

→ Continuous-time filter critical frequency could vary by over \(+50\%\)
Few Facts About Monolithic Rs & Cs

- While absolute value of monolithic Rs & Cs and gms are quite variable, with special attention paid to layout, C & R & gms quite well-matched
 - Ratios very accurate and stable over time and temperature
- With special attention to layout (e.g. interleaving, use of dummy devices, common-centroid geometries...):
 - Capacitor matching <<0.1%
 - Resistor matching <0.1%
 - Gm matching <0.5%

Impact of Process Variations on Filter Characteristics

Facts about RLC filters

- ω_{-3dB} determined by absolute value Ls & Cs

\[
C_{RLC}^{Norm} = C \times C_{1}^{Norm} = \frac{C_{1}^{Norm}}{R \times \omega_{-3dB}}
\]

\[
L_{2}^{RLC} = L_{2} \times L_{2}^{Norm} = \frac{L_{2}^{Norm} \times R^*}{\omega_{-3dB}}
\]

- Shape of filter depends on ratios of normalized Ls & Cs
Effect of Monolithic R & C Variations on Filter Characteristics

- Filter shape (whether Elliptic with 0.1dB Rpass or Butterworth, etc) is a function of ratio of normalized L_s & C_s in RLC filters.
- Critical frequency (e.g. ω_{-3dB}) function of absolute value of L_s & C_s.
- Absolute value of integrated R_s & C_s & G_{ms} are quite variable.
- Ratios very accurate and stable over time and temperature.

→ What is the effect of on-chip component variations on monolithic filter frequency characteristics?

Impact of Process Variations on Filter Characteristics

\[\tau_1 = \frac{c_{RLC}}{R_s} = \frac{c_{Norm}}{\omega_{-3dB}} \]
\[\tau_2 = \frac{L_{2RLC}}{R_s} = \frac{L_{2Norm}}{\omega_{-3dB}} \]
\[\tau_1 = \frac{c_{1Norm}}{l_{1Norm}} \]
\[\tau_2 = \frac{L_{2Norm}}{L_{2Norm}} \]
Impact of Process Variations on Filter Characteristics

\[\tau_1^{\text{intg}} = C_{11} R_1 = \frac{C_{11}^{\text{Norm}}}{\omega_{-3dB}} \]
\[\tau_2^{\text{intg}} = C_{12} R_2 = \frac{C_{12}^{\text{Norm}}}{\omega_{-3dB}} \]
\[\tau_1^{\text{intg}} = C_{11} R_1 = \frac{C_{11}^{\text{Norm}}}{\omega_{-3dB}} \]
\[\tau_2^{\text{intg}} = C_{12} R_2 = \frac{C_{12}^{\text{Norm}}}{\omega_{-3dB}} \]

Variation in absolute value of integrated
\[\tau_1^{\text{intg}} \]
\[\tau_2^{\text{intg}} \]
\[\text{Rs & Cs causes change in critical freq. } (\omega_{-3dB}) \]

Since Ratios of Rs & Cs very accurate
\[\Rightarrow \text{Continuous time monolithic filters fully retain their shape} \]

Example: LPF Worst Case Corner Frequency Variations

- While absolute value of on-chip RC (gm-C) time-constants vary by as much as 100% (process & temp.)
- With proper precautions, excellent matching can be achieved:
 \[\Rightarrow \text{Well-preserved relative amplitude & phase vs freq. characteristics} \]
 \[\Rightarrow \text{Need to adjust (tune) continuous-time filter critical frequencies only} \]
Tunable Opamp-RC Filters

• Example: A 1st order Opamp-RC filter is designed to have a corner frequency of 1.6MHz.
• Assuming process variations of:
 • \(C \) varies by ±10%
 • \(R \) varies by ±25%
• Build the filter in such a way that the corner frequency can be adjusted post-manufacturing.

![Diagram of a 1st order Opamp-RC filter]

Nominal \(R \) & \(C \) values for 1.6MHz corner frequency

Tunable Resistor

• Make provisions for either \(R \) or \(C \) to be adjustable (example adjustable \(R \))
• Monolithic Rs can only be made adjustable in discrete steps (not continuous)
• Assuming expected process variations of:
 • Maximum \(C \) variations by ±10% \(\Rightarrow C_{\text{min}} = 9\text{pF}, C_{\text{max}} = 11\text{pF} \)
 • Maximum \(R \) variations by ±25% \(\Rightarrow R_{\text{min}} = 7.5\text{K}, R_{\text{max}} = 12.5\text{K} \)
 \(\Rightarrow \) Corner frequency varies by ±35%
• Assuming \(n = 3 \) bit (0 or 1) control signal for adjustment

 \[
 \begin{align*}
 R_{\text{max}} &= R_{\text{nom}}(1+35%) = 13.5\text{KOHM} \\
 R_{\text{min}} &= R_{\text{nom}}(1-35%) = 6.5\text{KOHM} \\
 R_1 &= R_{\text{min}} \\
 R_2 &= (R_{\text{max}}-R_{\text{min}})4/7 = 4\text{K} \Rightarrow (2^{n-1} / (2^n - 1)) \\
 R_3 &= (R_{\text{max}}-R_{\text{min}})2/7 = 2\text{K} \Rightarrow (2^{n-2} / (2^n - 1)) \\
 R_4 &= (R_{\text{max}}-R_{\text{min}})1/7 = 1\text{K} \Rightarrow (2^{n-3} / (2^n - 1)) \\
 \text{Tuning resolution 10%} & \Rightarrow (1\text{K}/10\text{K}) \\
 \text{If finer resolution needed add more bits & Rs}
 \end{align*}
 \]

If finer resolution needed add more bits & Rs

![Diagram of a tunable resistor with MOSFETs as switches]
Tunable Opamp-RC Filter

<table>
<thead>
<tr>
<th>D2</th>
<th>D1</th>
<th>D0</th>
<th>R_{total}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6.5K</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>7.5K</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>8.5K</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13.5K</td>
</tr>
</tbody>
</table>

Post manufacturing:
- Set all D_x
- Measure -3dB frequency
 - If frequency too high, decrement D to D-1
 - If frequency too low, increment D to D+1
 - If frequency within 10% of the desired corner freq., stop

For higher order filters, all filter integrators tuned simultaneously

Tunable Opamp-RC Filters

Summary
- Program C_s and/or R_s to freq. tune the filter
- All filter integrators tuned simultaneously
- Tuning in discrete steps & not continuous
- Tuning resolution limited
- Switch parasitic C & series R can affect the freq. response of the filter
Example: Tunable Low-Pass Opamp-RC Filter
Adjustable Capacitors

Opamp RC Filters

- Advantages
 - Since resistors are quite linear, linearity only a function of opamp linearity
 → good linearity

- Disadvantages
 - Opamps have to drive resistive load, low output impedance is required
 → High power consumption
 - Continuous tuning not possible
 - Tuning requires programmable Rs and/or Cs
Integrator Implementation
Opamp-RC & Opamp-MOSFET-C & Opamp-MOSFET-RC

\[\int \]

\[\frac{v_0}{v_{in}} = \frac{-\alpha_0}{s} \text{ where } \alpha_0 = \frac{I}{R_{eq}C} \]

Use of MOSFETs as Resistors

R replaced by MOSFET

\rightarrow \text{Continuously variable resistor:}

MOSFET IV characteristic:
Use of MOSFETs as Resistors

Single-Ended Integrator

\[I_D = \mu C_{ox} \frac{W}{L} \left(V_{gs} - V_{th} \right) V_{ds} \left(\frac{V_{ds}}{2} \right) \]

\[I_D = \mu C_{ox} \frac{W}{L} \left(V_{gs} - V_{th} \right) \left(V_g - \frac{V_i}{2} \right) \]

\[G = \frac{\partial I_D}{\partial V_i} = \mu C_{ox} \frac{W}{L} \left(V_{gs} - V_{th} \right) \]

\[\Rightarrow \text{Tunable by varying } V_G. \]

Problem: Single-ended MOSFET-C Integrator → Effective R non-linear
Note that the non-linearity is mainly 2nd order type

Use of MOSFETs as Resistors

Differential Integrator

\[I_{D1} = \mu C_{ox} \frac{W}{L} \left(V_{gs} - V_{th} \right) \left(V_{gs} - V_{th} - \frac{V_i}{2} \right) \]

\[I_{D2} = \mu C_{ox} \frac{W}{L} \left(V_{gs} - V_{th} + \frac{V_i}{2} \right) \]

\[I_{D1} - I_{D2} = \mu C_{ox} \frac{W}{L} \left(V_{gs} - V_{th} \right) V_i \]

\[G = \frac{\partial (I_{D1} - I_{D2})}{\partial V_i} = \mu C_{ox} \frac{W}{L} \left(V_{gs} - V_{th} \right) \]

- Non-linear term cancelled!
- Admittance independent of \(V_i \)

Problem: Threshold voltage dependence
MOSFET-C Integrator

- For the Opamp-RC integrator, opamp input stays at 0V (virtual gnd.)

- For the MOSFET-C integrator, opamp input stays at the voltage V_x which is a function of 2nd order MOSFET non-linearities

 \rightarrow Common-mode voltage sensitivity

Use of MOSFET as Resistor Issues

- Distributed nature of gate capacitance & channel resistance results in infinite no. of high-frequency poles \rightarrow excess phase
- Filter performance mandates well-matched MOSFETs \rightarrow long channel devices
- Excess phase increases with L^2
 \rightarrow Tradeoff between matching and integrator Q
 \rightarrow This type of filter limited to low frequencies
Example: Opamp MOSFET-C Filter

- Suitable for low frequency applications
- Issues with linearity
- Linearity achieved ~40-50dB
- Needs tuning

5th Order Elliptic MOSFET-C LPF with 4kHz Bandwidth

Improved MOSFET-C Integrator

\[I_D = \mu C_{ox} \frac{W}{L} \left(V_{gs1} - V_{th1} - \frac{V_{ds1}}{2} \right) \]
\[I_{D1} = \mu C_{ox} \frac{W}{L} \left(V_{gs1} - V_{th1} - \frac{V_{ds1}}{2} \right) \]
\[I_{D2} = -\mu C_{ox} \frac{W}{L} \left(V_{gs2} - V_{th2} - \frac{V_{ds2}}{2} \right) \]
\[I_{X1} = I_{D1} + I_{D3} - \mu C_{ox} \frac{W}{L} \left(V_{gs1} - V_{th1} - \frac{V_{ds1}}{2} \right) \]
\[I_{X2} = -\mu C_{ox} \frac{W}{L} \left(V_{gs2} - V_{th2} - \frac{V_{ds2}}{2} \right) \]
\[I_{X1} - I_{X2} = \mu C_{ox} \frac{W}{L} \left(V_{gs1} - V_{gs2} \right) V_i \]
\[G = \frac{\partial (I_{D1} - I_{D2})}{\partial V_i} = \mu C_{ox} \frac{W}{L} \left(V_{gs1} - V_{gs2} \right) \]

No threshold dependence
First order Common-mode non-linearity cancelled
Linearity achieved in the order of 60-70dB

R-MOSFET-C Integrator

Improvement over MOSFET-C by adding resistor in series with MOSFET
Voltage drop primarily across resistor \rightarrow small MOSFET V_{ds} \rightarrow improved linearity
Linearity in the order of 90dB possible
Generally low frequency applications

R-MOSFET-C Lossy Integrator

Negative feedback around the non-linear MOSFETs improves linearity
Reduced frequency response accuracy

Example:
Opamp MOSFET-RC Filter

![Opamp MOSFET-RC Filter circuit diagram]

- Suitable for low frequency applications
- Significant improvement in linearity compared to MOSFET-C
- Needs tuning

Operational Amplifiers (Opamps) versus Operational Transconductance Amplifiers (OTA)

<table>
<thead>
<tr>
<th>Opamp</th>
<th>OTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage controlled voltage source</td>
<td>Voltage controlled current source</td>
</tr>
</tbody>
</table>

- Low output impedance
- Output in the form of voltage
- Can drive R-loads
- Good for RC filters, OK for SC filters
- Extra buffer adds complexity, power dissipation
- High output impedance
- In the context of filter design called gm-cells
- Output in the form of current
- Cannot drive R-loads
- Good for SC & gm-C filters
- Typically, less complex compared to opamp → higher freq. potential
- Typically lower power
Integrator Implementation
Gm-C & Opamp-Gm-C

\[
\frac{V_o}{V_{in}} = -\frac{\alpha_o}{s} \quad \text{where} \quad \alpha_o = \frac{G_m}{C}
\]

Gm-C Filters
Simplest Form of CMOS Gm-C Integrator

- MOSFET in saturation region:
 \[
 I_d = \frac{\mu C_{ox} W}{2 L} (V_{gs} - V_{th})^2
 \]

- Gm is given by:
 \[
 g_m = \frac{\partial I_d}{\partial V_{gs}} = \mu C_{ox} \frac{W}{L} (V_{gs} - V_{th})
 \]
 \[
 = 2 \frac{I_d}{V_{gs} - V_{th}}
 \]
 \[
 = 2 \left(\frac{I_d}{2} \mu C_{ox} \frac{W}{L} \right)^{1/2}
 \]
 \[\text{Id varied via } V_{control}\]
 \[\Rightarrow \text{gm tunable via } V_{control}\]
Gm-C Filters
Simplest Form of CMOS Gm

- Integrator behavior:
 \[
 \frac{V_o}{V_{in}} = -\omega_o \frac{s}{s}
 \]
 \[\omega_o = \frac{g_{m M_{1.2}}}{2 \times C_{int} g}\]

- Critical frequency continuously tunable via \(V_{control}\)

Second Order Gm-C Filter

- Simple design
- Tunable
- \(Q\) function of device ratios:
 \[
 Q = \frac{g_{m M_{1.2}}}{g_{m M_{3.4}}}
 \]
Filter Frequency Tuning Techniques

- Component trimming

- Automatic on-chip filter tuning
 - Continuous tuning
 - Master-slave tuning
 - Periodic off-line tuning
 - Systems where filter is followed by ADC & DSP, existing hardware can be used to periodically update filter freq. response

Example: Tunable Opamp-RC Filter

Post manufacturing:

- Usually at wafer-sort tuning performed
- Measure -3dB frequency
 - If frequency too high, decrement D to D-1
 - If frequency too low, increment D to D+1
 - If frequency within 10% of the desired corner freq., stop

Not practical to require end-user to tune the filter
- Need to fix the adjustment at the factory
Trimming

• Component trimming
 - Build fuses on-chip,
 • Based on measurements @ wafer-sort blow fuses by applying high current to the fuse
 - Expensive
 - Fuse regrowth problems!
 - Does not account for temp. variations & aging
 - Laser trimming
 • Trim components or cut fuses by laser
 - Even more expensive
 - Does not account for temp. variations & aging

Example: Tunable/Trimmable Opamp-RC Filter

<table>
<thead>
<tr>
<th>D2</th>
<th>D1</th>
<th>D0</th>
<th>Rtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6.5K</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>7.5K</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>8.5K</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13.5K</td>
</tr>
</tbody>
</table>
Automatic Frequency Tuning

• By adding additional circuitry to the main filter circuit
 – Have the filter critical frequency automatically tuned
 → Expensive trimming avoided
 → Accounts for critical frequency variations due to temp. and voltage changes

Master-Slave Automatic Frequency Tuning

• Following facts used in this scheme:
 – Use a replica (master) of the main filter (called the slave) in the tuning circuitry
 – Place the replica in close proximity of the main filter
 – Use the tuning signal generated to tune the replica, to also tune the main filter
 – In the literature, this scheme is called master-slave tuning!
Master-Slave Frequency Tuning
Reference Filter (VCF)

- Use a biquad for master filter (VCF)
- Utilize the fact that @ the frequency f_o the lowpass (or highpass) outputs are 90 degree out of phase wrt to input

$$\frac{V_{LP}}{V_{in}} = \frac{1}{s^2 + \frac{s}{\omega_0} + \frac{1}{Q\omega_0}} \quad @ \quad \omega = \omega_0, \quad \phi = -90^\circ$$

- Apply a sinusoid at the desired f_o
- Compare the LP output phase to the input
- Based on the phase difference
 - Increase or decrease filter critical freq.

Master-Slave Frequency Tuning
Reference Filter (VCF)

$$V_{tune} = -K \times V_{ref}^{rms} \times V_{LP}^{rms} \times \cos \phi$$
Master-Slave Frequency Tuning
Reference Filter (VCF)

- By closing the loop, feedback tends to drive the error voltage to zero.
 \(\rightarrow \) Locks \(f_0 \), the critical frequency of the filter to the accurate reference frequency
- Typically the reference frequency is provided by a crystal oscillator with accuracies in the order of few ppm

Master-Slave Frequency Tuning
Reference Filter (VCF)

• Issues to be aware of:
 – Input reference tuning signal needs to be sinusoid → disadvantage since clocks are usually available as square waveform
 – Reference signal feed-through to the output of the filter can limit filter dynamic range (reported levels or about 100μVrms)
 – Ref. signal feed-through is a function of:
 • Reference signal frequency wrt filter passband
 • Filter topology
 • Care in the layout
 • Fully differential topologies beneficial

Master-Slave Frequency Tuning
Reference Voltage-Controlled-Oscillator (VCO)

• Instead of VCF a voltage-controlled-oscillator (VCO) is used
• VCO made or replica integrator used in main filter
• Tuning circuit operates exactly as a conventional phase-locked loop (PLL)
• Tuning signal used to tune main filter

Master-Slave Frequency Tuning
Reference Voltage-Controlled-Oscillator (VCO)

- Issues to be aware of:
 - Design of stable & repeatable oscillator challenging
 - VCO operation should be limited to the linear region or else the operation loses accuracy
 - Limiting the VCO signal range to the linear region not a trivial design issue
 - In the case of VCF based tuning ckt there was only ref. signal feedthrough. In this case, there is also the feedthrough of the VCO signal!!
 - Advantage over VCF based tuning → Reference input signal square wave (not sin.)