EE247 Lecture 2

• Material covered today:
 – Nomenclature
 – Filter specifications
 • Quality factor
 • Frequency characteristics
 • Group delay
 – Filter types
 • Butterworth
 • Chebyshev I
 • Chebyshev II
 • Elliptic
 • Bessel
 – Group delay comparison example

Nomenclature
Filter Types

- Lowpass
- Highpass
- Bandpass
- Band-reject (Notch)
- All-pass

Provide frequency selectivity
Phase shaping or equalization
Filter Specifications

- Frequency characteristics (lowpass filter):
 - Passband ripple (Rpass)
 - Cutoff frequency or $-3dB$ frequency
 - Stopband rejection
 - Passband gain
- Phase characteristics:
 - Group delay
- SNR (Dynamic range)
- SNDR (Signal to Noise+Distortion ratio)
- Linearity measures: IM3 (intermodulation distortion), HD3 (harmonic distortion), IIP3 or OIP3 (Input-referred or output-referred third order intercept point)
- Power/pole & Area/pole
Quality Factor (Q)

- The term Quality Factor (Q) has different definitions:
 - Component quality factor (inductor & capacitor Q)
 - Pole quality factor
 - Bandpass filter quality factor

- Next 3 slides clarifies each

Component Quality Factor (Q)

- For any component with a transfer function:
 \[H(j\omega) = \frac{I}{R(\omega) + jX(\omega)} \]

- Quality factor is defined as:
 \[Q = \frac{X(\omega)}{R(\omega)} \rightarrow \frac{\text{Energy Stored}}{\text{Average Power Dissipation per unit time}} \]
Inductor & Capacitor Quality Factor

- Inductor Q:
 \[Y_L = \frac{1}{R_s + j\omega L} \quad Q_L = \frac{\omega L}{R_s} \]

- Capacitor Q:
 \[Z_C = \frac{1}{\frac{1}{R_P} + j\omega C} \quad Q_C = \omega CR_P \]

Pole Quality Factor

\[Q_{Pole} = \frac{\omega_X}{2\sigma_X} \]
What is Group Delay?

- Consider a continuous time filter with s-domain transfer function $G(s)$:

 $$G(j\omega) = |G(j\omega)| e^{j\theta(\omega)}$$

- Let us apply a signal to the filter input composed of sum of two sinewaves at slightly different frequencies ($\Delta\omega << \omega$):

 $$v_{IN}(t) = A_1 \sin(\omega t) + A_2 \sin[(\omega + \Delta\omega) t]$$

- The filter output is:

 $$v_{OUT}(t) = A_1 |G(j\omega)| \sin[\omega t + \theta(\omega)] + A_2 |G[j(\omega + \Delta\omega)]| \sin[(\omega + \Delta\omega) t + \theta(\omega + \Delta\omega)]$$
What is Group Delay?

\[\text{v}_{\text{out}}(t) = A_1 \cdot G(j \omega) \cdot \sin \left\{ \omega \left[t + \frac{\theta(\omega)}{\omega} \right] \right\} + \]

\[+ A_2 \cdot G[j(\omega + \Delta \omega)] \cdot \sin \left\{ (\omega + \Delta \omega) \left[t + \frac{\theta(\omega + \Delta \omega)}{\omega + \Delta \omega} \right] \right\} \]

Since \(\frac{\Delta \omega}{\omega} \ll 1 \) then \(\left[\frac{\Delta \omega}{\omega} \right] \to 0 \)

\[\frac{\theta(\omega + \Delta \omega)}{\omega + \Delta \omega} = \frac{\theta(\omega)}{\omega} \left[\frac{1}{\omega} \left(1 - \frac{\Delta \omega}{\omega} \right) \right] \]

\[= \frac{\theta(\omega)}{\omega} + \left(\frac{d\theta(\omega)}{d\omega} - \frac{\theta(\omega)}{\omega} \right) \frac{\Delta \omega}{\omega} \]

What is Group Delay?

Signal Magnitude and Phase Impairment

\[\text{v}_{\text{out}}(t) = A_1 \cdot G(j \omega) \cdot \sin \left\{ \omega \left[t + \frac{\theta(\omega)}{\omega} \right] \right\} + \]

\[+ A_2 \cdot G[j(\omega + \Delta \omega)] \cdot \sin \left\{ (\omega + \Delta \omega) \left[t + \frac{\theta(\omega + \Delta \omega)}{\omega + \Delta \omega} \right] \right\} \]

- If the second term in the phase of the 2nd sine wave is non-zero, then the filter’s output at frequency \(\omega + \Delta \omega \) is time-shifted differently than the filter’s output at frequency \(\omega \) → “Phase distortion”
- If the second term is zero, then the filter’s output at frequency \(\omega + \Delta \omega \) and the output at frequency \(\omega \) are each delayed in time by \(-\theta(\omega)/\omega\)
- \(\tau_{PD} = -\theta(\omega)/\omega \) is called the “phase delay” and has units of time
What is Group Delay?
Signal Magnitude and Phase Impairment

• Phase distortion is avoided only if:
\[
\frac{d\theta(\omega)}{d\omega} - \frac{\theta(\omega)}{\omega} = 0
\]
• Clearly, if \(\theta(\omega) = k\omega, \) \(k\) a constant, \(\rightarrow\) no phase distortion
• This type of filter phase response is called “linear phase”
 \(\rightarrow\) Phase shift varies linearly with frequency
• \(\tau_{GR} = -\frac{d\theta(\omega)}{d\omega}\) is called the “group delay” and also has units of time. For a linear phase filter \(\tau_{GR} = \tau_{PD} = k\)
 \(\rightarrow\) \(\tau_{GR} = \tau_{PD}\) implies linear phase
• Note: Filters with \(\theta(\omega) = k\omega + c\) are also called linear phase filters, but they’re not free of phase distortion

What is Group Delay?
Signal Magnitude and Phase Impairment

• If \(\tau_{GR} = \tau_{PD}\) \(\rightarrow\) No phase distortion

\[
v_{OUT}(t) = A_1 \left| G(j\omega) \right| \sin \left[\omega \left(t - \tau_{GR} \right) \right] + \\
+ A_2 \left| G[j(\omega + \Delta \omega)] \right| \sin \left[(\omega + \Delta \omega) \left(t - \tau_{GR} \right) \right]
\]

• If also \(\left| G(j\omega) \right| = \left| G[j(\omega + \Delta \omega)] \right|\) for all input frequencies within the signal-band, \(v_{OUT}\) is a scaled, time-shifted replica of the input, with no “signal magnitude distortion”:

• In most cases neither of these conditions are realizable exactly
Summary
Group Delay

- Phase delay is defined as:
 \[\tau_{PD} = -\frac{\theta(\omega)}{\omega} \quad \text{[time]} \]
- Group delay is defined as:
 \[\tau_{GR} = -\frac{d\theta(\omega)/d\omega}{\omega} \quad \text{[time]} \]
- If \(\theta(\omega) = k\omega \), \(k \) a constant, \(\rightarrow \) no phase distortion
- For a linear phase filter \(\tau_{GR} = \tau_{PD} = k \)

Filter Types
Butterworth Lowpass Filter

- Maximally flat amplitude within the filter passband
 \[\frac{d^N}{d\omega} \left| H(j\omega) \right| = 0 \quad \omega=0 \]
- Moderate phase distortion

Example: 5th Order Butterworth filter
Butterworth Lowpass Filter

- All poles
- Poles located on the unit circle with equal angles

Example: 5th Order Butterworth filter

Filter Types
Chebyshev I Lowpass Filter

- Chebyshev I filter
 - Equal-ripple passband
 - Sharper transition band compared to Butterworth
 - Poorer group delay
Chebyshev I Lowpass Filter Characteristics

- All poles
- Poles located on an ellipse inside the unit circle
- Allowing more ripple in the passband:
 - Narrower transition band
 - Sharper cut-off
 - Higher pole Q

Example: 5th Order Chebyshev I Filter

Filter Types
Chebyshev II Lowpass

- Chebyshev II filter
 - Ripple in stopband
 - Sharper transition band compared to Butterworth
 - Passband group delay superior to Chebyshev I

Example: 5th Order Chebyshev II filter
Filter Types
Chebyshev II Lowpass

- Both poles & zeros
 - No. of poles n
 - No. of zeros $n-1$
- Poles located both inside & outside of the unit circle
- Zeros located on $j\omega$ axis
- Ripple in the stopband only

Example: 5th Order Chebyshev II Filter

Filter Types
Elliptic Lowpass Filter

- Elliptic filter
 - Ripple in passband
 - Ripple in the stopband
 - Sharper transition band compared to Butterworth & both Chebyshevs
 - Poorer group delay
Filter Types
Elliptic Lowpass Filter

- Both poles & zeros
 - No. of poles \(n \)
 - No. of zeros \(n-1 \)
- Zeros located on \(j\omega \) axis
- Sharp cut-off
 - Narrower transition band
 - Pole Q higher compared to the previous filters

Example: 5th Order Elliptic Filter

Filter Types
Bessel Lowpass Filter

- Bessel
 - All poles
 - Maximally flat group delay
 - Poor amplitude attenuation
 - Poles outside unit circle (s-plane)
 - Relatively low Q poles

Example: 5th Order Bessel filter
Filter Types
Comparison of Various LPF Magnitude Response

All 5th order filters with same corner freq.

Filter Types
Comparison of Various LPF Singularities
Comparison of Various LPF Groupdelay

Group Delay Comparison
Example

- Lowpass filter with 100kHz corner frequency
- Chebyshev I versus Bessel
 - Both filters 4th order- same -3dB point
 - Passband ripple of 1dB allowed for Chebyshev I
Magnitude Response

Phase Response
Group Delay

![Group Delay Graph]

Normalized Group Delay

![Normalized Group Delay Graph]
Step Response

![Step Response Graph]

Intersymbol Interference (ISI)

ISI → Broadening of pulses resulting in interference between successive transmitted pulses
Example: Simple RC filter

![Intersymbol Interference Diagram]
Pulse Broadening
Bessel versus Chebyshev

Chebyshev has more pulse broadening compared to Bessel → More ISI

Response to Random Data
Chebyshev versus Bessel

Input Signal:
130kHz max.
signal spectral density
Measure of Signal Degradation
Eye Diagram

- Eye diagram is a useful graphical illustration for signal degradation
- Consists of many overlaid traces of a signal using an oscilloscope where the symbol timing serves as the scope trigger
- It is a visual summary of all possible intersymbol interference waveforms
 - The vertical opening → immunity to noise
 - Horizontal opening → timing jitter

Measure of Signal Degradation
Eye Diagram

- Random data with max. power spectral density of:
 - 50kHz
 - 100kHz
 - 130kHz
Eye Diagram
Chebyshev versus Bessel

Input Signal
Random data
maximum power
spectral density → 130kHz

Eye Diagrams

Random data maximum power spectral density → 50kHz
Eye Diagrams

Random data maximum power spectral density \rightarrow 100kHz

Filter with constant group delay \rightarrow More open eye \rightarrow Lower BER (bit-error-rate)

Summary

Filter Types

- Filters with high signal attenuation per pole \Rightarrow poor phase response
- For a given signal attenuation requirement of preserving constant group delay \Rightarrow Higher order filter
 - In the case of passive filters \Rightarrow higher component count
 - Case of integrated active filters \Rightarrow higher chip area & power dissipation
- In cases where filter is followed by ADC and DSP
 - Possible to digitally correct for phase non-linearities incurred by the analog circuitry by using phase equalizers
Summary
Filter Types

- Filters with high signal attenuation per pole \(\rightarrow\) poor phase response
- For a given signal attenuation requirement of preserving constant group delay \(\rightarrow\) Higher order filter
 - In the case of passive filters \(\rightarrow\) higher component count
 - Case of integrated active filters \(\rightarrow\) higher chip area & power dissipation
- In cases where filter is followed by ADC and DSP \(\rightarrow\) possible to digitally correct for phase non-linearities incurred by the analog circuitry by using digital phase equalizers

RLC Filters

- Bandpass filter:
 \[
 \frac{V_o}{V_{in}} = \frac{s^2 + \frac{LC}{Q} s + \frac{1}{Q^2}}{s^2 + \frac{1}{Q^2}}
 \]
 \[
 \omega_0 = \frac{1}{\sqrt{LC}}
 \]
 \[
 Q = \omega_0 R C = \frac{R}{\omega_0}
 \]
RLC Filters

- Design a bandpass filter with:
 - Center frequency of 1kHz
 - Q of 20

- Assume that the inductor has series R resulting in an inductor Q of 40
- What is the effect of finite inductor Q on the overall Q?

\[
\frac{1}{Q_{\text{filt}}} = \frac{1}{Q_{\text{filt}}^{\text{ideal}}} + \frac{1}{Q_{\text{ind.}}}
\]

- Component Q must be much higher compared to desired filter Q
RLC Filters

Question:
Can RLC filters be integrated on-chip?

Monolithic Inductors
Feasible Quality Factor & Value

Feasible monolithic inductor in CMOS tech. <10nH with Q <7

Ref: “Radio Frequency Filters”, Lawrence Larson; Mead workshop presentation 1999
Monolithic LC Filters

- Monolithic inductor in CMOS tech.
 - L<10nH with Q<7
- Max. capacitor
 - C<10pF

\Rightarrow LC filters in the monolithic form feasible:
- freq >500MHz
- Only low quality factor filters

Learn more in EE242

Monolithic Filters

- Desirable to integrate filters with critical frequencies <<500MHz
- Per previous slide LC filters not a practical option in the integrated form
- Good alternative:

\Rightarrow Integrator based filters