ADC Converters (continued)
- Successive approximation ADCs (continued)
- Flash ADC
- Flash ADC sources of error
 • Sparkle code
 • Meta-stability
- Comparator design

Summary of Last Lecture
ADC Converters
- Sampling (continued)
 • Track & hold circuits
 • T/H combined with summing/difference function
 • T/H circuit incorporating gain & offset cancellation
- Electro-Static Discharge (ESD) protection
- ADC architectures
 • Serial- slope type
 • Successive approximation
Successive Approximation ADC

Example: 6-bit ADC & $V_{IN} = 5/8V_{REF}$

- High accuracy achievable (16+ Bits)
- Require N clock cycles for N-bit conversion (much faster than slope type)
- Moderate speed proportional to B (MHz range)

Example: SAR ADC
Charge Redistribution Type

- T/H inherent in DAC
- Operation starts by connecting all top plate to gnd and all bottom plates to V_{IN}
- To test the MSB all top plate are opened bottom plate of $32C$ connected to V_{REF} & rest of bottom plates connected to ground \rightarrow input to comparator $= -V_{IN} + V_{REF}/2$
- Comparator is strobed to determine the polarity of input signal if - MSB=1 if + MSB=0
- The process continues until all bits are determined
Example: SAR ADC

Charge Redistribution Type

- To 1st order parasitic (C_p) insensitive since top plate driven from initial 0 to final 0 by the global negative feedback
- Linearity is a function of accuracy of C ratios
- Possible to add a C ratio calibration cycle (see ref.)

Flash ADC

- B-bit flash ADC:
 - DAC generates all possible $2^B - 1$ levels
 - $2^B - 1$ comparators compare V_{IN} to DAC outputs
 - Comparator output:
 - If $V_{DAC} < V_{IN} \Rightarrow 0$
 - If $V_{DAC} > V_{IN} \Rightarrow 1$
 - Comparator outputs form thermometer code
 - Encoder converts thermometer to binary code
Flash ADC Converter

Example: 3-bit Conversion

<table>
<thead>
<tr>
<th>Encoder</th>
<th>B-bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Flash Converter

- Very fast: only 1 clock cycle per conversion
 - Half cycle \(V_{IN} \) and \(V_{DAC} \) comparison
 - Half cycle \(2^B - 1 \) to B encoding

- High complexity: \(2^B - 1 \) comparators

- Input capacitance of \(2^B - 1 \) comparators connected to the input node:
 - High capacitance at input node
Flash Converter Sources of Error

- Comparator input:
 - Offset
 - Nonlinear input capacitance
 - Kickback noise (disturbs reference)
 - Signal dependent sampling time

- Comparator output:
 - Sparkle codes (… 11101000 …)
 - Metastability

Flash Converter Example: 8-bits ADC

- 8-bits → 255 comparators
- $V_{REF} = 1V \rightarrow 1LSB = 4mV$
- DNL < 1/2 LSB → Comparator input referred offset < 2mV
- $2mV = 6\sigma_{offset}$
 $\rightarrow \sigma_{offset} < 0.33mV$
Flash ADC Converter
Example: 8-bits ADC (continued)

\[I \sigma_{\text{offset}} < 0.33 \text{mV} \]

• Let us assume in the technology used:
 – Offset-per-unit-sqrt(WxL)=\[\frac{3 \text{[mV}\times\mu]}{\sqrt{W\times L}} = 0.33 \text{mV} \]
 \[\rightarrow W \times L = 83 \mu^2 \]
 – Issues:
 • Si area quite large
 • Large input capacitance
 • Since depending on input voltage different number of comparator input
 transistors would be on/off- total input capacitance varies as input varies
 \[\rightarrow \text{Nonlinear input capacitance could give rise to signal distortion particularly at} \]
 \[\text{high frequencies} \]

 Ref: M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching properties of MOS

Trade-offs:

– Allowing larger DNL e.g. 1LSB instead of 0.5LSB:
 • Increases the maximum allowable input-referred offset voltage by a factor of 2
 • Decreases the required device WxL by a factor of 4
 • Reduces the input device area by a factor of 4
 • Reduces the input capacitance by a factor of 4!

– Reducing the ADC resolution by 1-bit
 • Increases the maximum allowable input-referred offset voltage by a factor of 2
 • Decreases the required device WxL by a factor of 4
 • Reduces the input device area by a factor of 4
 • Reduce the input capacitance by a factor of 4

– Add offset cancellation to the comparator and thus decrease the input device area-- could reduce the conversion rate
Flash Converter

Maximum Tolerable Comparator Offset versus ADC Resolution

Assumption:

\[DNL = 0.5 \text{LSB} \]

Note:

Graph shows offset, note that depending on min acceptable yield, the derived offset numbers are associated with \(2\sigma\) to \(6\sigma\) offset voltage.

Typical Flash Output Encoder

- Thermometer code → 1-of-n decoding
- Final encoding → NOR ROM
- Ideally, for each code, only one ROM row is activated

Output \(0 0 1 1\)

\[b_3 \ b_2 \ b_1 \ b_0 \]
Sparkle Codes

Correct Output: 0111

Problem: Two rows are on

Erroneous Output: 1111 → 1/2FS error!

Erroneous 0 (comparator offset?)

VDD

b3 b2 b1 b0

Sparkle Tolerant Encoder

Protects against a single sparkle.

Ref: C. Manglesdorf et al, "A 400-MHz Flash Converter with Error Correction," JSSC February 1990, pp. 997-1002
Meta-Stability

Different gates interpret metastable output \(X \) differently

Correct output: 0111

Erroneous output: 1111

Solutions:
- Extra latches following comparator (high power)
- Gray encoding

Gray Encoding

<table>
<thead>
<tr>
<th>Thermometer Code</th>
<th>Gray</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_7)</td>
<td>(G_3)</td>
<td>(B_3)</td>
</tr>
<tr>
<td>(T_6)</td>
<td>(G_2)</td>
<td>(B_2)</td>
</tr>
<tr>
<td>(T_5)</td>
<td>(G_1)</td>
<td>(B_1)</td>
</tr>
<tr>
<td>(T_4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(T_7)</th>
<th>(T_6)</th>
<th>(T_5)</th>
<th>(T_4)</th>
<th>(T_3)</th>
<th>(T_2)</th>
<th>(T_1)</th>
<th>(G_3)</th>
<th>(G_2)</th>
<th>(G_1)</th>
<th>(B_3)</th>
<th>(B_2)</th>
<th>(B_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

\[G_1 = T_1 \overline{T}_3 + T_5 \overline{T}_7 \]

\[G_2 = T_2 \overline{T}_6 \]

\[G_3 = T_4 \]

- Each \(T_i \) affects only one \(G_i \)
- Avoids disagreement of interpretation by multiple gates
- Protects also against sparkles
- Follow Gray encoder by (latch and) binary encoder
Voltage Comparators

![Comparator Diagram]

Play an important role in majority of ADCs
Function: Compare the instantaneous value of two analog signals & generate a digital output voltage based on the sign of the difference:

\[
\begin{align*}
\text{If } V_{i+} - V_{i-} &> 0 \Rightarrow V_{\text{out}} = \text{“1”} \\
\text{If } V_{i+} - V_{i-} &< 0 \Rightarrow V_{\text{out}} = \text{“0”}
\end{align*}
\]

Voltage Comparator Architectures

Comparator architectures
- High gain amplifier with differential analog input & single-ended large swing output
 - Output swing compatible with driving digital logic circuits
 - Open-loop amplification \(\Rightarrow\) no frequency compensation required
 - Precise gain not required
- Latched comparators; in response to a strobe, input stage disabled & digital output stored in a latch till next strobe
 - Two options for implementation:
 - Latch-only comparator
 - Low-gain amplifier + high-sensitivity latch
- Sample-data comparators
 - T/H input
 - Offset cancellation
Comparators w/ High-Gain Amplification

Amplify $V_{in}(\text{min})$ to V_{DD}
$V_{in}(\text{min})$ determined by ADC resolution

Example: 12-bit ADC with:
- $V_{FS} = 1.5V \rightarrow 1\text{LSB}=0.36mV$
- $V_{DD}=1.8V$

\Rightarrow For 1.8V output & 0.5LSB precision:

$A_{\text{min}}^\text{Vin} = \frac{1.8V}{0.18mV} = 10,000$

Comparators
1-Single-Stage Amplification

$f_o = \text{unity-gain frequency, } f_o = -3dB \text{ frequency}$

$f_o = \frac{f_o}{A_v}$

Example: $f_o = 1GHz$ & $A_v = 10,000$

$f_o = \frac{1GHz}{10,000} = 100kHz$

$\tau_{\text{setting}} = \frac{1}{2\pi f_o} = 1.6\mu\text{sec}$

Allow a few τ for output to settle

$\frac{f_{\text{Max}}}{f_{\text{Clock}}} \rightarrow 5 \tau_{\text{setting}} = 126kHz$

Too slow!

\Rightarrow Try cascade of lower gain stages to broadband response
Comparators
2- Cascade of Open Loop Amplifiers

The stages identical \rightarrow small-signal model for the cascades:

One stage:

$|A_v(0)| = g_m R_L$

$\omega_c = -3\text{dB frequency} = \frac{1}{R_L C_T}$

$\omega_u = -\text{unity gain frequency} = G \cdot BW = \frac{g_m}{C_T}$

$\omega_d = \frac{\omega_a}{|A_v(0)|}$

Open Loop Cascade of Amplifiers

For an N-stage cascade:

$A_T(z) = |A_v(0)|^N = \left|\frac{A_v(0)}{1 + \frac{1}{C_T}}\right|^{1/N}$

Define $\omega_{oN} = -3$dB frequency of the N-stage cascade

Then

$|A_T\left(\omega_{oN}\right)| = \left|\frac{A_v(0)}{\sqrt{2}}\right|^N$

and

$\omega_{oN} = \omega_{o1} \frac{2^{N-1}}{2-1} = \frac{\omega_{o1}}{|A_v(0)|^{1/2}} \frac{2^{N-1}}{2-1}$

For a specified $|A_v(0)|$

$|A_v(0)| = \left|\frac{A_T(0)}{1^{1/N}}\right|^{1/N}$

$\Rightarrow \omega_{oN} = \frac{\omega_{o1}}{|A_v(0)|^{1/2}} \frac{2^{N-1}}{2-1}$

Thus,

$\frac{\omega_{oN}}{\omega_{o1}} = \left[\frac{\omega_{o1}}{|A_T(0)|^{1/2}} \frac{2^{N-1}}{2-1}\right] \left[\frac{\omega_{o1}}{|A_T(0)|^{1/2}} \frac{2^{N-1}}{2-1}\right]^{-1}$

$= \left|\frac{A_T(0)}{1^{1/N}}\right| \frac{2^{N-1}}{2-1}$
Open Loop Cascade of Amplifiers

For $|A_f(0)|=10,000$

| N | ω_{on}/ω_0 | $|A_f(0)|$ |
|-----|------------------------|----------|
| 1 | 1 | 10,000 |
| 2 | 64 | 100 |
| 3 | 236 | 21.5 |
| 4 | 435 | 10 |
| 5 | 611 | 6.3 |
| 10 | 1067 | 2.5 |
| 20 | 1185 | 1.6 |

Example:

$N=3, \quad f_o = 1 \text{GHz} \quad & \quad |A_f(0)|=10000$

$f_{o,N} = \frac{1 \text{GHz}}{(10,000)^{2/3}} \sqrt{2^{1/3} - 1} = 23.7 \text{MHz}$

$\tau_{setting} = \frac{1}{2\pi f_o} = 7 \text{nsec}$

Allow a few τ for output to settle

$f_{Clock} \rightarrow \frac{1}{5\tau_{setting}} = 29 \text{MHz}$

f_{max} improved from 126kHz to 29MHz $\rightarrow x225$

Open Loop Cascade of Amplifiers

Offset Voltage

- From offset point of view high gain/stage is preferred

- Choice of # of stage \rightarrow bandwidth vs offset tradeoff
Open Loop Cascade of Amplifiers
Step Response

- Assuming linear behavior

\[v_{o1} = \frac{1}{C} \int_{0}^{t} g_m v_{in} \, dt = \frac{g_m}{C} v_{in} t \]

\[v_{o2} = \frac{1}{C} \int_{0}^{t} g_m v_{o1} \, dt = \frac{g_m}{C} \left(\frac{1}{2} \right) \left(\frac{g_m}{C} \right) v_{in} t^2 \]

\[v_{o3} = \frac{1}{C} \int_{0}^{t} g_m v_{o2} \, dt = \frac{g_m}{C} \left(\frac{1}{3} \right) \left(\frac{1}{2} \right) \left(\frac{g_m}{C} \right) v_{in} t^3 \]

N Stages

\[v_{ON} = \left(\frac{g_m}{C} \right)^{N} \left(\frac{N!}{N!} \right) v_{in} \]

For the output to reach a specified \(v_{out} \) (i.e., \(v_{ON} = v_{out} \)) the delay is

\[\tau_D = \left(\frac{C}{g_m} \right)^{1/N} \left(\frac{v_{out}}{v_{in}} \right)^{1/N} \]
Open Loop Cascade of Amplifiers

Delay/(C/gm)

- Minimum total delay broad function of N
- Relationship between # of stages that minimize delay (N_{opt}) and gain (V_{out}/V_{in}) approximately:

$$N_{opt} = \begin{cases} 1 + \log_2 A_T & \text{for } A < 1000 \\ 1.2 \ln A_T & \text{for } A \geq 1000 \end{cases}$$

Offset Cancellation

- In sampled-data cascade of amplifiers V_{os} can be cancelled
 - Store on ac-coupling caps in series with amp stages
- Offset associated with a specific amp can be cancelled by storing it in series with either the input or the output of that stage
- Offset can be cancelled by adding a pair of auxiliary inputs to the amplifier and storing the offset on capacitors connected to the aux. inputs during offset cancellation phase

Offset Cancellation
Output Series Cancellation

- Amp modeled as ideal
 + V_{os} (input referred)

- Store offset:
 - S1, S4 \rightarrow open
 - S2, S3 \rightarrow closed
 $\Rightarrow V_C = AV_{os}$

Offset Cancellation
Output Series Cancellation

Amplify:
- S1, S4 \rightarrow closed
- S2, S3 \rightarrow open
 $\Rightarrow V_C = AV_{os}$

Circuit requirements:
- Amp not saturate during offset storage
- High-impedance (C) load $\Rightarrow C_c$ not discharged
- $C_c >> C_L$ to avoid attenuation
- $C_c >> C_{switch}$ offset due to charge injection
Offset Cancellation
Cascaded Output Series Cancellation

1- S_1 open, $S_2, 3, 4, 5$ closed

$V_{C1} = A_1 x V_{os1}$
$V_{C2} = A_2 x V_{os2}$
$V_{C3} = A_3 x V_{os3}$
Offset Cancellation
Cascaded Output Series Cancellation

2- S3 \rightarrow \text{open}
- Feedthrough from S3 \rightarrow \text{offset on X}
- Switch offset, \(\varepsilon_2 \) induced on node X
- Since S4 remains closed, offset associated with \(\varepsilon_2 \) \rightarrow \text{stored on C2}

\[V_x = \varepsilon_2 \]
\[V_{C1} = A_1 \times V_{os1} - \varepsilon_2 \]
\[V_{C2} = A_2 \times (V_{os2} + \varepsilon_2) \]

3- S4 \rightarrow \text{open}
- Feedthrough from S4 \rightarrow \text{offset on Y}
- Switch offset, \(\varepsilon_3 \) induces error on node Y
- Since S5 remains closed, offset associated with \(\varepsilon_3 \) \rightarrow \text{stored on C3}

\[V_y = \varepsilon_3 \]
\[V_{C2} = A_2 \times (V_{os2} + \varepsilon_2) - \varepsilon_3 \]
\[V_{C3} = A_3 \times (V_{os3} + \varepsilon_3) \]
Offset Cancellation
Cascaded Output Series Cancellation

4. S2 \rightarrow open, S1 \rightarrow closed, S5 \rightarrow open
 - S1 closed & S2 open \rightarrow since input connected to low impedance source
 charge injection not of major concern
 - Switch offset, ε_4 introduced due to S5 opening

\[
V_X = A_1 (V_{in} + V_{os1}) - V_{c1}
= A_1 (V_{in} + V_{os1}) - (A_1 V_{os1} - \varepsilon_2)
= A_1 V_{in} + \varepsilon_2
\]

\[
V_Y = A_2 (V_X + V_{os2}) - V_{c2}
= A_2 (A_1 V_{in} + \varepsilon_2 + V_{os2}) - \left[A_2 (V_{os2} + \varepsilon_2) - \varepsilon_3\right]
= A_1 A_2 V_{in} + \varepsilon_3
\]

\[
V_{out} = A_3 (V_Y + V_{os3}) - V_{c3}
= A_3 (A_1 A_2 V_{in} + \varepsilon_3 + V_{os3}) - \left[A_3 (V_{os3} + \varepsilon_3) - \varepsilon_4\right]
= A_1 A_2 A_3 V_{in} + \varepsilon_4
\]
Offset Cancellation
Cascaded Output Series Cancellation

\[V_{\text{out}} = A_1 \cdot A_2 \cdot A_3 \left(V_{\text{in}} + \frac{e_2}{A_1 \cdot A_2 \cdot A_3} \right) \]

Input-Refereed Offset = \(\frac{e_2}{A_1 \cdot A_2 \cdot A_3} \)

Example:
3-stage open-loop differential amplifier with offset cancellation + output amplifier (see ref.)

\[A_{\text{Total(DC)}} = 2 \times 10^6 = 120\text{dB} \]
\[\text{Input-referred offset} < 5\mu V \]

Offset Cancellation
Output Series Cancellation

• Advantages:
 – Complete cancellation
 – Closed-loop stability not required

• Disadvantages:
 – Gain per stage must be small
 – Offset storage C in the signal path- could slow down overall performance
Offset Cancellation

Input Series Cancellation

Offset Cancellation

Input Series Cancellation

Store offset

\[S1 = 0 \text{ (off)} \]
\[S2, S3 = 1 \text{ (conducting)} \]

\[V_C = -A(V_C - V_{os}) \]

Note: Mandates closed-loop stability

Offset Cancellation
Input Series Cancellation

Amplify

\[
S2, S3 \rightarrow \text{open} \\
S1 \rightarrow \text{closed}
\]

\[
V_{out} = -A(V_{in} + V_C - V_{os}) = -A\left[V_{in} + V_{os} \left(\frac{A}{A+1} - 1 \right) \right]
\]

\[
\therefore V_{out} = -A\left(V_{in} - \frac{V_{os}}{A+1} \right)
\]

and

Input-Referred Offset = \[\frac{V_{os}}{A+1} \]

Offset Cancellation
Cascaded Input Series Cancellation

\[
V_{out} = A_1A_2 \left[V_{in} - \frac{V_{os2}}{A_1(A_2+1)} \right] \frac{\varepsilon_2}{A_1}
\]

Input-Referred Offset = \[\frac{V_{os2}}{A_1(A_2+1)} \frac{\varepsilon_2}{A_1} \]

\[\varepsilon_2 \rightarrow \text{charge injection associated with} \]
\[\text{opening of S4} \]
Offset Cancellation
Input Series Cancellation

• Advantages:
 – In applications such as C-array successive approximation ADCs can use C-array to store offset

• Disadvantages:
 – Cancellation not complete
 – Requires closed loop stability
 – Offset storage C in the signal path- could slow down overall performance

CMOS Comparators
Cascade of Gain Stages

Fully differential gain stages → 1st order cancellation of switch feedthrough offset

1-Output series offset cancellation

2- Input series offset cancellation
CMOS Comparators
Cascade of Gain Stages

3-Combined input & output series offset cancellation

Offset Cancellation

• Cancel offset by additional pair of inputs (Lecture 20 slide 16 & 17)
Latched Comparators

Compares two input voltages at time t_x & generates a digital output:

- If $V_{i+} - V_{i-} > 0 \rightarrow V_{out} = \text{"1"}$
- If $V_{i+} - V_{i-} < 0 \rightarrow V_{out} = \text{"0"}$

CMOS Latched Comparators

Comparator amplification need not be linear
\rightarrow can use a latch \rightarrow regeneration

Latch \rightarrow Amplification + positive feedback
CMOS Latched Comparators
Small Signal Model

Latch can be modeled as:

→ Single-pole amp + positive feedback

Small signal ac half circuit

CMOS Latched Comparator
Latch Delay

\[
g_a V = \frac{V}{R_i} + C \frac{dV}{dt}
\]

\[
\frac{g_a}{C} \left(1 - \frac{1}{g_m R_L} \right) V = \frac{dV}{dt}
\]

Integrating both sides:

\[
\frac{g_a}{C} \left(1 - \frac{1}{g_m R_L} \right) \int_{t_i}^{t_f} dt = \int_{V_i}^{V_f} \frac{1}{V} dV
\]

Latch Delay:

\[
t_h = t_f - t_i = C \left(1 - \frac{1}{g_m R_L} \right) \ln \left(\frac{V_f}{V_i} \right)
\]

For \(g_m R_L >> 1\)

\[
t_h = \frac{C}{g_m} \ln \left(\frac{V_f}{V_i} \right)
\]
CMOS Latched Comparators

\[t_d \approx \frac{C}{g_m} \ln \left(\frac{V_2}{V_1} \right) \]

\[\frac{V_2}{V_1} \rightarrow \text{Latch Gain} = A_L \]

\[\rightarrow t_d \approx \frac{C}{g_m} \ln A_L \]

<table>
<thead>
<tr>
<th>(A_L)</th>
<th>(\frac{t_d}{C/g_m})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>100</td>
<td>4.6</td>
</tr>
<tr>
<td>1000</td>
<td>6.9</td>
</tr>
<tr>
<td>10K</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Compared to a 3-stage open-loop cascade of amps for equal overall gain of 1000

\(\rightarrow \) Latch faster by about x3

Latch-Only Comparator

- Main problem associated with latch-only comparator topology:
 - High input-referred offset voltage (as high as 100mV!)
- Solution:
 - Use preamplifier to amplify the signal and reduce overall input-referred offset
Latch offset attenuated by preamp gain when referred to preamp input.

Assuming the two offset sources are uncorrelated:

\[\sigma_{\text{Input-Ref. Offset}} = \sqrt{\sigma_{\text{Vos Preamp}}^2 + \frac{1}{A_{\text{Preamp}}} \sigma_{\text{Vos Latch}}^2} \]

Example:
- \(\sigma_{\text{Vos Preamp}} = 4\text{mV} \)
- \(\sigma_{\text{Vos Latch}} = 50\text{mV} \)
- \(A_{\text{Preamp}} = 10 \)

\[\sigma_{\text{Input-Ref. Offset}} = \sqrt{4^2 + \frac{1}{10^2} 50^2} = 6.4\text{mV} \]

Pre-Amplifier Tradeoffs

- Example:
 - Latch offset: 50 to 100mV
 - Preamp DC gain: 10X
 - Preamp input-referred latch offset: 5 to 10mV
 - Input-referred preamplifier offset: 2 to 10mV
 - Overall input-referred offset: 5.5 to 14mV

\[\Rightarrow \text{Addition of preamp reduces the latch input-referred offset reduced by } \sim 7 \text{ to } 9X \Rightarrow \sim \text{extra 3-bit resolution!} \]
Comparator Preamplifier Gain-Speed Tradeoffs

- Amplifier maximum Gain-Bandwidth product \((f_u)\) for a given technology, typically a function of maximum device \(f_t\)

\[
f_u = f_0 = \frac{f_s}{A_{\text{preamp}}} = 3dB \text{ frequency } \quad \tau_0 = \text{settling time}
\]

For example assuming preamp has a gain of 10:

\[
f_0 = \frac{f_s}{10} = \frac{1GHz}{10} = 100MHz
\]

\[
\tau_0 = \frac{1}{2\pi f_0} = 1.6\text{ sec}
\]

→ Tradeoff:
- To reduce the effect of latch offset → high preamp gain desirable
- Fast comparator → low preamp gain

Latched Comparator

Important features:
- Maximum clock rate \(f_s\) → settling time, slew rate, small signal bandwidth
- Resolution → gain, offset
- Overdrive recovery
- Input capacitance (and linearity of input capacitance!)
- Power dissipation
- Input common-mode range and CMR
- Kickback noise
- ...
Comparators Overdrive Recovery

Linear model for a single-pole amplifier:

$U \rightarrow$ amplification after time t_a

During reset amplifier settles exponentially to its zero input condition with $t_0 = RC$

Assume $V_m \rightarrow$ maximum input normalized to $1/2\text{lsb} (=1)$

Example: Worst case input/output waveforms

Previous input \rightarrow max. possible e.g. VFS

Current input \rightarrow min. input-referred signal (0.5LSB)

If recovery is not high enough to allow output to discharge (recover) from previous state- then it may not be able to resolve the current input \rightarrow error

To minimize this effect:
1. Passive clamp
2. Active restore
3. Low gain/stage
Comparators Overdrive Recovery
Limiting Output

Clamp
Adds parasitic capacitance

Active Restore
After outputs are latched → Activate ϕ_R & equalize output nodes

CMOS Latched Comparator Delay
Including Preamplifier

Latch delay found previously:

$$\tau_D = \frac{C}{g_m} \ln \left(\frac{V_2}{V_1} \right)$$

Assuming gain of A_c for the preamplifier:

$$\tau_D = \frac{C}{g_m} \ln \left(A_c \frac{V_0}{V_m} \right)$$
Latched Comparator Including Preamplifier Example

Preamplifier gain:
\[A_c = \frac{g_{m3}^{M3}}{g_{m3}^{M7}} \left(\frac{V_{GS}^{M3} - V_{th}^{M1}}{V_{GS}^{M1} - V_{th}^{M1}} \right) \]

Comparator delay:
\[\tau_d = C \ln \left(A \frac{V_o}{V_{in}} \right) \]

Comparator Dynamic Behavior

 Comparator Reset Comparator Decision

\(V_{\text{OUT}} \)

\(\tau_{\text{delay}} \)

\(T_{\text{CLK}} \)
Comparator Resolution

\[\Delta t = \left(\frac{g_m}{C} \right) \ln\left(\frac{V_{in1}}{V_{in2}} \right) \]

Comparator Voltage Transfer Function

Non-Idealities

- Comparator offset voltage
- Meta-Stable region (output ambiguous)
CMOS Comparator Example

- Flash ADC: 8 bits, ±1/2LSB INL @ fs=15MHz (Vref=3.8V, LSB~15mV)
- No offset cancellation

Comparator with Auto-Zero

Flash ADC Comparator with Auto-Zero

\[V_{C+} - V_{C-} = (V_{Ref+} - V_{Ref-}) - V_{offset} \]

\[V_i = A_{i1} \cdot A_{i2} \cdot [V_{in+} - V_{in-}] - (V_{C+} - V_{C-}) - V_{offset} \]

Substituting for \((V_{C+} - V_{C-})\) from previous cycle:

\[V_i = A_{i1} \cdot A_{i2} \cdot [V_{in+} - V_{in-}] - (V_{Ref+} - V_{Ref-}) \]

Note: Offset is cancelled & difference between input & reference established