EE247
Lecture 3

• Active Filters
 – Active biquads
 • Sallen- Key & Tow-Thomas
 • Integrator-based filters
 – Signal flowgraph concept
 – First order integrator-based filter
 – Second order integrator-based filter & biquads
 – High order & high Q filters
 • Cascaded biquads
 – Cascaded biquad sensitivity to component mismatch
 • Ladder type filters

Correction & Clarification
From Last Lecture (2)

• Slide # 36- Pulse response for 4th order Chebyshev I was shown with an offset- error corrected and updated on lecture notes

• Slide # 43- There was a question in class regarding the frequency at which the Qs were measured- Inductors are measured at specific application frequencies, all above 1GHz:
 – Since $Q_L=(\omega L/R)$ thus Qs would be lower at our frequencies of interest
Filters

2nd Order Transfer Functions (Biquads)

- Biquadratic (2nd order) transfer function:

\[
H(s) = \frac{1}{s^2 + \frac{s}{Q_p} + \frac{1}{Q_p}}
\]

\[
|H(j\omega)| = \frac{1}{\sqrt{(1-\frac{\omega^2}{Q_p^2})^2 + \left(\frac{\omega}{Q_p}\right)^2}}
\]

\[
H(j\omega)_{\omega=0} = 1, \quad H(j\omega)_{\omega->\infty} = 0, \quad H(j\omega)_{\omega=\omega_p} = Q_p
\]

Biquad poles @: \(s = -\frac{\omega_p}{2Q_p}\sqrt{1-4Q_p^2} \)

Note: for \(Q_p \leq \frac{1}{2} \) poles are real, complex otherwise

Implementation of Biquads

- Passive RC: only real poles \(\rightarrow \) can’t implement complex conjugate poles

- Terminated LC
 - Low power, since it is passive
 - Only fundamental noise sources \(\rightarrow \) load and source resistance
 - As previously analyzed, not feasible in the monolithic form for \(f < \text{a few 100s of MHz} \)

- Active Biquads
 - Many topologies can be found in filter textbooks!
 - Widely used topologies:
 - Single-opamp biquad: Sallen-Key
 - Multi-opamp biquad: Tow-Thomas
 - Integrator based biquads
Active Biquad
Sallen-Key Low-Pass Filter

- Single gain element
- Can be implemented both in discrete & monolithic form
- "Parasitic sensitive"
- Versions for LPF, HPF, BP, ...
 - Advantage: Only one opamp used
 - Disadvantage: Sensitive to parasitic – all pole no zeros

\[
H(s) = \frac{G}{1 + \frac{s}{\omega_pQ_p} + \frac{s^2}{\omega_p^2}}
\]
\[
\omega_p = \frac{1}{\sqrt{R_1C_1R_2C_2}}
\]
\[
Q_p = \frac{\omega_p}{\frac{1}{R_1C_1} + \frac{1}{R_2C_1} + \frac{1-G}{R_2C_2}}
\]

Addition of Imaginary Axis Zeros

- Sharpen transition band
- Can "notch out" interference
- High-pass filter (HPF)
- Band-reject filter

\[
H(s) = K \left(1 + \frac{s}{\omega Z} \right)^2 \left(1 + \frac{s}{\omega_pQ_p} + \frac{s^2}{\omega_p^2} \right)^2
\]
\[
|H(j\omega)|_{\omega->\infty} = K \left(\frac{\omega_p}{\omega Z} \right)^2
\]

Note: Always represent transfer functions as a product of a gain term, poles, and zeros (pairs if complex). Then all coefficients have a physical meaning, and readily identifiable units.
Imaginary Zeros

- Zeros substantially sharpen transition band
- At the expense of reduced stop-band attenuation at high frequency

$$f_p = 100kHz$$
$$Q_p = 2$$
$$f_z = 3f_p$$

Moving the Zeros

$$f_p = 100kHz$$
$$Q_p = 2$$
$$f_z = f_p$$
Tow-Thomas Active Biquad

Frequency Response

\[
\frac{V_{o1}}{V_{in}} = -k_2 \frac{(b_2a_i - b_i) s + (b_2a_0 - b_0)}{s^2 + a_1 s + a_0}
\]

\[
\frac{V_{o2}}{V_{in}} = \frac{b_2 s^2 + b_i s + b_0}{s^2 + a_1 s + a_0}
\]

\[
\frac{V_{o3}}{V_{in}} = -\frac{1}{k_1 \sqrt{a_0}} \frac{(b_0 - b_2a_0) s + (a_i b_0 - a_0 b_1)}{s^2 + a_1 s + a_0}
\]

- \(V_{o2}\) implements a general biquad section with arbitrary poles and zeros
- \(V_{o1}\) and \(V_{o3}\) realize the same poles but are limited to at most one finite zero
Component Values

\[
\begin{align*}
 b_i &= \frac{R_i}{R_i R R C_1 C_2} \\
 b_i &= \frac{1}{R C_1} \left(\frac{R_i}{R_i} - \frac{R R_i}{R_i R_i} \right) \\
 b_i &= \frac{R_i}{R_i} \\
 a_i &= \frac{R_i}{R_i R R C_1 C_2} \\
 a_i &= \frac{1}{R C_1} \\
 k_i &= \sqrt[2]{\frac{R_i R C_2}{R_i R C_1}} \\
 k_i &= \frac{R_i}{R_i}
\end{align*}
\]

given \(a_i, b_i, k_i, C_1, C_2\) and \(R_i\)

\[
\begin{align*}
 R_i &= \frac{1}{a_i C_1} \\
 R_i &= \frac{k_i}{\sqrt{a_i C_1}} \\
 R_i &= \frac{1}{k_i} \frac{1}{\sqrt{a_i C_1}} \\
 R_i &= \frac{1}{k_i} \frac{1}{\sqrt{a_i C_1}} \\
 R_i &= \frac{k_i}{\sqrt{a_i C_1}} \\
 R_i &= \frac{R_i}{R_i} \\
 R_i &= k_i R_i
\end{align*}
\]

it follows that

\[
\omega_c = \frac{R_i}{R_i R R C_1 C_2} \\
Q_c = \omega_c R_i C_i
\]

Higher-Order Filters in the Integrated Form

- One way of building higher-order filters (\(n>2\)) is via cascade of 2nd order biquads, e.g. Sallen-Key, or Tow-Thomas

\[
\begin{array}{ccc}
 \text{2nd order Filter} & \rightarrow & \text{2nd order Filter} \\
 1 & \rightarrow & 2 \\
 \rightarrow & \cdots & \cdots \\
 \rightarrow & \text{2nd order Filter} & \rightarrow \\
 N & \rightarrow & \text{Filter order: } n=2N
\end{array}
\]

Cascade of 2nd order biquads:

- Easy to implement
- Highly sensitive to component mismatch good for low Q filters only
- \(\rightarrow\) Good alternative: Integrator-based ladder type filters
Integrator Based Filters

- Main building block for this category of filters
 - Integrator
- By using signal flowgraph techniques
 - Conventional RLC filter topologies can be converted to integrator based type filters

- Next few pages:
 - Introduction to signal flowgraph techniques
 - 1st order integrator based filter
 - 2nd order integrator based filter
 - High order and high Q filters

What is a Signal Flowgraph (SFG)?

- SFG → Topological network representation consisting of nodes & branches- used to convert one form of network to a more suitable form (e.g. passive RLC filters to integrator based filters)
- Any network described by a set of linear differential equations can be expressed in SFG form
- For a given network, many different SFGs exists
- Choice of a particular SFG is based on practical considerations such as type of available components

What is a Signal Flowgraph (SFG)?

- Signal flowgraph consist of nodes & branches:
 - Nodes represent variables (V & i in our case)
 - Branches represent transfer functions (we will call the transfer function branch multiplication factor or BMF)

- To convert a network to its SFG form, KCL & KVL is used to derive state space description

- Simple example:

\[I_{in} \times Z = V_o \]

Signal Flowgraph (SFG) Examples

- Circuit: \[I_{in} \rightarrow V_o \]
 - State-space description: \[I_{in} \times R = V_o \]
 - SFG: \[I_{in} \rightarrow V_o \]

- Circuit: \[V_{in} \rightarrow I_o \]
 - State-space description: \[V_{in} \times \frac{1}{SL} = I_o \]
 - SFG: \[V_{in} \rightarrow I_o \]

- Circuit: \[I_{in} \rightarrow V_o \]
 - State-space description: \[I_{in} \times \frac{1}{SC} = V_o \]
 - SFG: \[I_{in} \rightarrow V_o \]
Useful Signal Flowgraph (SFG) Rules

- Two parallel branches can be replaced by a single branch with overall BMF equal to sum of two BMFs

- A node with only one incoming branch & one outgoing branch can be eliminated & replaced by a single branch with BMF equal to the product of the two BMFs

- An intermediate node can be multiplied by a factor (k). BMFs for incoming branches have to be multiplied by k and outgoing branches divided by k
Useful Signal Flowgraph (SFG) Rules

- Simplifications can often be achieved by shifting or eliminating nodes

\[
\begin{align*}
V_i & \quad V_2 & \quad V_3 & \quad V_o \\
\downarrow & \quad a & \quad -b & \quad 1 \\
& \quad b & \quad 1 & \quad V_i \\
& \quad 1 & \quad -b & \quad V_2 \\
& \quad 1 & \quad a & \quad V_3 \\
& \quad 1 & \quad b & \quad V_o
\end{align*}
\]

- A self-loop branch with BMF y can be eliminated by multiplying the BMF of incoming branches by $1/(1-y)$

\[
\begin{align*}
V_i & \quad V_2 & \quad V_3 & \quad V_o \\
\downarrow & \quad a & \quad -b & \quad 1 \\
& \quad b & \quad 1 & \quad V_i \\
& \quad 1 & \quad -b & \quad V_2 \\
& \quad 1 & \quad a & \quad V_3 \\
& \quad 1 & \quad b & \quad V_o
\end{align*}
\]

Integrator Based Filters

1st Order LPF

- Conversion of simple lowpass RC filter to integrator-based type by using signal flowgraph techniques

\[
\frac{V_o}{V_{in}} = \frac{1}{1 + sRC}
\]
What is an Integrator?

Example: Single-Ended Opamp-RC Integrator

\[V_o = -V_{in} \int \frac{I}{sRC} \, ds, \quad V_o = -\frac{1}{RC} \int V_{in} \, dt \]

Note: Practical integrator in CMOS technology has input & output both in the form of voltage and not current \(\rightarrow\) Consideration for SFG derivation

Integrator Based Filters

1st Order LPF

1. Start from circuit prototype-
 Name voltages & currents for all components

2. Use KCL & KVL to derive state space description in such a way to have BMFs in the integrator form:
 - Capacitor voltage expressed as function of its current \(V_{cap} = f(I_{cap})\)
 - Inductor current as a function of its voltage \(I_{ind} = f(V_{ind})\)

3. Use state space description to draw signal flowgraph (SFG) (see next page)
Integrator Based Filters
First Order LPF

\[V_1 = V_{in} - V_C \]
\[V_C = I_2 \frac{1}{sC} \]
\[V_o = V_C \]
\[I_1 = V_1 \frac{1}{R_s} \]
\[I_2 = I_1 \]

- All voltages & currents \(\rightarrow \) nodes of SFG
- Voltage nodes on top, corresponding current nodes below each voltage node

Normalize
- Since integrators are the main building blocks \(\rightarrow \) require in & out signals in the form of voltage (not current)
 - Convert all currents to voltages by multiplying current nodes by a scaling resistance \(R^* \)
 - Corresponding BMFs should then be scaled accordingly

\[V_I = V_{in} - V_o \]
\[I_1 = \frac{V_I}{R_s} \]
\[V_o = \frac{I_2}{sC} \]
\[I_2 = I_1 \]

\[V_I' = \frac{R^*}{R_s} V_I \]
\[I_1' = \frac{R^*}{sC R} I_1 \]
\[I_2' = I_1' \]
1st Order Lowpass Filter SGF

Normalize

\[V_{\text{in}} \rightarrow V_1 \rightarrow \frac{1}{R_s} \rightarrow l \rightarrow V_0 \]

\[\frac{1}{sC} \]

\[I_1 \rightarrow 1 \rightarrow I_2 \]

\[\frac{1}{sC} \]

\[V_{\text{in}} \rightarrow V_1 \rightarrow \frac{1}{R_s} \rightarrow l \rightarrow V_0 \]

\[\frac{1}{sC} \]

\[I_1 \times R \]

\[I_2 \times R \]

\[l \]

\[V_1 \rightarrow 1 \rightarrow V_2' \]

\[\frac{1}{sC R^2} \]

1st Order Lowpass Filter SGF

Synthesis

\[V_{\text{in}} \rightarrow V_1 \rightarrow -l \rightarrow V_0 \]

\[\frac{R^*}{R_s} \]

\[\frac{l}{sC R^2} \]

\[V_1 \rightarrow -l \rightarrow V_2' \]

\[\frac{R^*}{R_s} \]

\[\frac{l}{sC R^2} \]

Consolidate two branches

\[R^* = R_s \quad \tau = R^* \times C \]
First Order Integrator Based Filter

\[
\begin{align*}
V_{in} & \quad + & 1 & V_{I} & \quad -l & V_{o} \\
\int & & \frac{1}{\tau s} & & 1 & \\
\end{align*}
\]

\[H(s) = \frac{1}{\tau s}\]

1st Order Filter
Built with Opamp-RC Integrator

- Single-ended Opamp-RC integrator has a sign inversion from input to output
 - Convert SFG accordingly by modifying BMF

\[V_{in} = -V_{in}'\]
1st Order Filter
Built with Opamp-RC Integrator

- To avoid requiring an additional opamp to perform summation at the input node:

\[V_{in}' = -V_{in} \]

1st Order Filter
Built with Opamp-RC Integrator (continued)

\[\frac{V_O}{V_{in}} = \frac{1}{1 + sRC} \]
Opamp-RC 1st Order Filter Noise

Identify noise sources (here it is resistors & opamp)
Find transfer function from each noise source to the output (opamp noise next page)

\[v_n = k \sum_{m=1}^{\infty} H_m(f) \frac{d}{df} S_m(f) \]

\[S_m(f) \rightarrow \text{Noise spectral density of } m^{th} \text{ noise source} \]

\[V_{n1}^2 = 4KTR\alpha^2 \]

\[V_{n2}^2 = 4KTR\Delta f \]

Typically, \(\alpha \) increases as filter order increases

Opamp-RC Filter Noise Opamp Contribution

- So far only the fundamental noise sources are considered
- In reality, noise associated with the opamp increases the overall noise
- For a well-designed filter opamp is designed such that noise contribution of opamp is negligible compared to other noise sources
- The bandwidth of the opamp affects the opamp noise contribution to the total noise
Integrator Based Filter

2nd Order RLC Filter

- State space description:
 \[V_R = V_L = V_C = V_o \]
 \[V_C = \frac{I_C}{sC} \]
 \[I_R = \frac{V_R}{R} \]
 \[I_L = \frac{V_L}{sL} \]
 \[I_C = I_{in} - I_R - I_L \]

- Draw signal flowgraph (SFG)

\[I_{in} \quad \begin{array}{c}
+ \quad V_R \\
R \\
- \quad I_{in} \\
\end{array} \quad \begin{array}{c}
+ \quad V_C \\
C \\
- \quad V_L \\
\end{array} \quad \begin{array}{c}
+ \quad V_o \\
O \\
- \quad I_{in} \\
\end{array} \]

2nd Order RLC Filter SGF Normalize

- Convert currents to voltages by multiplying all current nodes by the scaling resistance \(R^* \)

\[I_{in} \quad \begin{array}{c}
\frac{1}{R} \\
\frac{1}{sC} \\
- \quad I_{in} \\
\end{array} \quad \begin{array}{c}
\frac{1}{sL} \\
\end{array} \quad \begin{array}{c}
I_{in} \quad \begin{array}{c}
\frac{1}{R} \\
- \quad I_{in} \\
\end{array} \quad \begin{array}{c}
\frac{1}{sC} \\
- \quad I_{in} \\
\end{array} \quad \begin{array}{c}
\frac{1}{sL} \\
\end{array} \quad \begin{array}{c}
V_1 \quad \begin{array}{c}
\frac{1}{R} \\
- \quad V_1 \\
\end{array} \quad \begin{array}{c}
\frac{1}{sC} \\
- \quad V_2 \\
\end{array} \quad \begin{array}{c}
\frac{1}{sL} \\
- \quad V_3 \\
\end{array} \quad \begin{array}{c}
V_0 \\
\end{array} \]

\[I_{X}R^* = V_{X} \]
2nd Order RLC Filter SGF
Synthesis

\[\tau_1 = \frac{R^*}{L} \quad \tau_2 = \frac{L}{R^*} \]

Second Order Integrator Based Filter
Second Order Integrator Based Filter

\[\frac{V_{BP}}{V_{in}} = \frac{\tau_2 s}{\tau_1 \tau_2 s^2 + \beta \tau_2 s + \beta} \]
\[\frac{V_{LP}}{V_{in}} = \frac{1}{\tau_1 \tau_2 s^2 + \beta \tau_2 s + \beta} \]
\[\frac{V_{HP}}{V_{in}} = \frac{\tau_1 s^2}{\tau_1 \tau_2 s^2 + \beta \tau_2 s + \beta} \]

\[\tau_1 = R^* C \quad \tau_2 = L / R^* \]
\[\beta = \frac{R^*}{R} \]
\[\omega_0 = \frac{1}{\sqrt{\tau_1 \tau_2}} \]
\[Q = \frac{1}{\beta} \sqrt{\frac{\tau_1}{\tau_2}} \]

From matching point of view desirable:
\[\tau_1 = \tau_2 \rightarrow Q = \frac{R^*}{R} \]

Second Order Bandpass Filter Noise

\[\overline{v^2_0} = k \sum_{m=1}^{\infty} W_m(f) \alpha S_m(f) \, df \]

- Find transfer function of each noise source to the output
- Integrate contribution of all noise sources
- Here it is assumed that opamps are noise free (not usually the case!)

\[\overline{v^2_{n1}} = \overline{v^2_{n2}} = 4KTRdf \]

\[\sqrt{\overline{v^2_0}} = \sqrt{\frac{4 K T R}{Q \frac{kT}{C}}} \]

Typically, \(\alpha \) increases as filter order increases
Note the noise power is directly proportion to \(Q \)
Second Order Integrator Based Filter Biquad

- By combining outputs can generate general biquad function:

\[
\frac{V_0}{V_{in}} = \frac{a_1 \tau_1 \tau_2 s^2 + a_2 \tau_2 s + a_3}{\tau_1 \tau_2 s^2 + \beta \tau_2 s + 1}
\]

s-plane

Summary
Integrator Based Monolithic Filters

- Signal flowgraph techniques utilized to convert RLC networks to integrator based active filters
- Each reactive element (L & C) replaced by an integrator
- Fundamental noise limitation determined by integrating capacitor value:
 - For lowpass filter: \(\sqrt{V_0} = \sqrt{\alpha \frac{k T}{C}} \)
 - Bandpass filter: \(\sqrt{V_0} = \sqrt{\alpha Q \frac{k T}{C}} \)

where \(\alpha \) is a function of filter order and topology
Higher Order Filters

- How do we build higher order filters?
 - Cascade of biquads and 1st order sections
 - Each complex conjugate pole built with a biquad and real pole with 1st order section
 - Easy to implement
 - In the case of high order high Q filters → highly sensitive to component mismatch
 - Direct conversion of high order ladder type RLC filters
 - SFG techniques used to perform exact conversion of ladder type filters to integrator based filters
 - More complicated conversion process
 - Much less sensitive to component mismatch compared to cascade of biquads

Higher Order Filters
Cascade of Biquads

Example: LPF filter for CDMA baseband receiver

- LPF with
 - fpass = 650 kHz Rpass = 0.2 dB
 - fstop = 750 kHz Rstop = 45 dB
 - Assumption: Can compensate for phase distortion in the digital domain

- 7th order Elliptic Filter
- Implementation with cascaded Biquads
 Goal: Maximize dynamic range
 - Pair poles and zeros
 - In the cascade chain place lowest Q poles first and progress to higher Q poles moving towards the output node
Overall Filter Frequency Response

Bode Diagram

Phase (deg) Magnitude (dB)
-80 -60 -40 -20 0

Frequency [Hz] 300kHz 1MHz 3MHz

Mag. (dB)
-0.2 0

Pole-Zero Map

Qpole fpole [kHz]
16.7902 659.496
3.6590 611.744
1.1026 473.643
319.568

fzero [kHz]
1297.5
836.6
744.0
CDMA Filter
Built with Cascade of 1st and 2nd Order Sections

- 1st order filter implements the single real pole
- Each biquad implements a pair of complex conjugate poles and a pair of imaginary axis zeros

Biquad Response

EECS 247 Lecture 3: Filters © 2007 H.K. Page 45
Biquad Response

Intermediate Outputs
Sensitivity to Relative Component Mismatch

Component variation in Biquad 4 relative to the rest (highest Q poles):
- Increase ω_{p4} by 1%
- Decrease ω_{z4} by 1%

High Q poles \rightarrow High sensitivity in Biquad realizations

High Q & High Order Filters

• Cascade of biquads
 - Highly sensitive to component mismatch \rightarrow not suitable for implementation of high Q & high order filters
 - Cascade of biquads only used in cases where required Q for all biquads <4 (e.g. filters for disk drives)

• LC ladder filters more appropriate for high Q & high order filters (next topic)
 - Will show later \rightarrow Less sensitive to component mismatch
Ladder Type Filters

- For simplicity, will start with all pole ladder type filters
 - Convert to integrator based form
 - Example shown

- Next will attend to high order ladder type filters incorporating zeros
 - Implement the same 7th order elliptic filter in the form of ladder type
 - Find level of sensitivity to component mismatch
 - Compare with cascade of biquads
 - Convert to integrator based form utilizing SFG techniques
 - Example shown

LC Ladder Filters

- Made of resistors, inductors, and capacitors
- Doubly terminated or singly terminated (with or w/o \(R_L \))

\textit{Doubly terminated LC ladder filters} \(\rightarrow\) \textit{Lowest sensitivity to component mismatch}
LC Ladder Filters

• Design:
 – Filter tables
 – CAD tools
 • Matlab
 • Spice

LC Ladder Filter Design Example

Design a LPF with maximally flat passband:
- $f_{-3dB} = 10MHz$, $f_{stop} = 20MHz$
- $Rs > 27dB$

- Maximally flat passband \Rightarrow Butterworth
 - Find minimum filter order:
 - Use of Matlab
 - or Tables
 - Here tables used

 $f_{stop} / f_{-3dB} = 2$
 $Rs > 27dB$

Minimum Filter Order \Rightarrow 5th order Butterworth
Find values for L & C from Table:

Note L & C values normalized to $\omega_{-3dB} = 1$

Denormalization:

Multiply all L_{Norm}, C_{Norm} by:

$L_r = \frac{R}{\omega_{-3dB}}$

$C_r = \frac{1}{RX \omega_{-3dB}}$

R is the value of the source and termination resistor

(choose both 1Ω for now)

Then: $L = L_r \times L_{Norm}$

$C = C_r \times C_{Norm}$

From: Williams and Taylor, p. 11.3
Magnitude Response Simulation

-6 dB passband attenuation due to double termination

SPICE simulation Results

LC Ladder Filter
Conversion to Integrator Based Active Filter

\[
\begin{align*}
V_1 &= V_{in} - V_2, & I_2 &= -\frac{V_2}{sC_1} \\
V_3 &= V_2 - V_4, & V_4 &= \frac{I_4}{sC_3} \\
V_5 &= V_4 - V_6, & V_6 &= \frac{I_6}{sC_5} \\
V_o &= V_6 \\
I_1 &= \frac{V_1}{R_s}, & I_2 &= I_1 - I_3 \\
I_4 &= I_3 - I_5, & I_5 &= \frac{V_5}{sL_2} \\
I_6 &= I_5 - I_7, & I_7 &= \frac{V_6}{R_L}
\end{align*}
\]
LC Ladder Filter
Signal Flowgraph

\[V_i = V_{in} - V_2 \]
\[V_2 = \frac{I_2}{sC_1} \]
\[V_3 = V_2 - V_4 \]
\[V_4 = \frac{I_4}{sC_3} \]
\[V_5 = V_4 - V_6 \]
\[V_6 = \frac{I_6}{sC_4} \]
\[V_o = V_6 \]

\[I_i = \frac{V_i}{R_s} \]
\[I_2 = I_1 - I_3 \]
\[I_4 = I_3 - I_5 \]
\[I_6 = I_5 - I_7 \]
\[I_7 = \frac{V_o}{R_L} \]
LC Ladder Filter

Normalize

\[\frac{V_1}{R_s} \]
\[\frac{1}{sC_1} \]
\[\frac{1}{sL_2} \]
\[\frac{1}{sC_3} \]
\[\frac{1}{sL_4} \]
\[\frac{1}{sC_5} \]
\[\frac{1}{R_L} \]

\[V_{in} \]
\[V_1 \]
\[-1 \]
\[V_2 \]
\[1 \]
\[V_3 \]
\[-1 \]
\[V_4 \]
\[1 \]
\[V_5 \]
\[-1 \]
\[V_6 \]
\[1 \]
\[V_7 \]

\[V_{in} \]
\[V_1 \]
\[-1 \]
\[V_2 \]
\[1 \]
\[V_3 \]
\[-1 \]
\[V_4 \]
\[1 \]
\[V_5 \]
\[-1 \]
\[V_6 \]
\[1 \]
\[V_7 \]

LC Ladder Filter

Synthesize

\[\frac{R^*}{R_s} \]
\[\frac{1}{sC_1R^*} \]
\[\frac{R^*}{sL_2} \]
\[\frac{1}{sC_3R^*} \]
\[\frac{R^*}{sL_4} \]
\[\frac{1}{sC_5R^*} \]
\[\frac{R^*}{R_L} \]

\[V_{in} \]
\[V_1 \]
\[-1 \]
\[V_2 \]
\[1 \]
\[V_3 \]
\[-1 \]
\[V_4 \]
\[1 \]
\[V_5 \]
\[-1 \]
\[V_6 \]
\[1 \]
\[V_7 \]

\[V_{in} \]
\[V_1 \]
\[-1 \]
\[V_2 \]
\[1 \]
\[V_3 \]
\[-1 \]
\[V_4 \]
\[1 \]
\[V_5 \]
\[-1 \]
\[V_6 \]
\[1 \]
\[V_7 \]