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&% & More General Geometries

i UeRerkel L —————————

* Euler-Bernoulli beam theory works well for simple geometries

* But how can we handle more complicated ones?

* Example: tapered cantilever beam

* Objective: Find an expression for displacement as a function
of location x under a point load F applied at the tip of the
free end of a cantilever with tapered width W(x)
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w Solution: Use Principle of Virtual Work
[ U B L6

* In an energy-conserving system (i.e., elastic materials), the
energy stored in a body due to the quasi-static (i.e., slow)
action of surface and body forces is equal to the work done
by these forces ..

* Implication: if we can formulate stored energy as a function
of the deformation of a mechanical object, then we can
determine how an object responds to a force by determining
the shape the object must take in order to minimize the
difference U between the stored energy and the work done
by the forces:

U = Stored Energy - Work Done

* Key idea: we don't have to reach U = O to produce a very
useful, approximate analytical result for load-deflection
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& More Visual Description ...
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& ~ Fundamentals: Energy Density

* Strain energy density: [J/m3] M@: ), %"9 /%’fg ;gm::m
% To find work done in straining ma'rer'iak Shoed )
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* Total strain energy [J]: ° e~ efed of Work

% Integrate over all strains (normal and shear)

W= m‘[%ﬁ{g: +e}+e} )+ %G()'; e AT )}W
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? | Bending Energy Density

y’ Neutral Axis

y(x) = transverse displacement
of neutral axis
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* First, find the bending energy dW,,,4 in an infinitesimal
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* Strain due to axial load S contributes an energy dW . ...,
in length dx, since lengthening of the different element dx

4GWh

T

(to ds) results in a strain ¢, Birdwniad Theorem Shear Modulus
2, 11121 2% [ L ZI
= ¢ : = I+
o ((dxl () ] h[l+(% ] & Z(%J * See W.C. Albert, "Vibrating Quartz Crystal Beam
Jded o (dy . Accelerometer,” Proc. ISA Int. Instrumentation Symp., May
prmb 4] - P Sain Evergy 1982, pp. 33-44

(W i Sexd¢=~f(%)h1:; wax: ‘,.LS @

s  Applying the Principle of Virtual Work 5 Example: Tapered Cantilever Beam
[ UCBerkeley 1"UGBerkeley
* Basic Procedure: * Objective: Find an expression for displacement as a function
% Guess the form of the beam deflection under the applied of location x under a point load F applied at the tip of the
loads free end of a cantilever with tapered width W(x)
% Vary the parameters in the beam deflection function in Top view of cantilever's W{x)
order to minimize: — — =] —
Assumes W$___________________|W(x) 1 ZL)
Sum strain energles pomt load ) 50% taper fop vew . o
:';x |_£“ Adjustable
U= ZW z F U f; x  Pparameters:
‘j: side iow Yl_> minimize U
|
D«splacemenf “ F _ 2 3
at point load * Start by guessing the solution ———— Y(X)=C; X" +CaX
% Find minima by simply setting derivatives % It should satisfy the boundary conditions
ind minima Dy simply setting derivatives To zero % The strain energy integrals shouldn't be too tedious
* See Senturia, pg. 244, for a general expression with < This might not matter much these days, though, since
distributed surface loads and body forces one could just use matlab or mathematica
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A Strain Energy And Work By F & Find ¢, and c; That Minimize U
[ UCBerkeley B
* Minimize U — basically, find the ¢, and c; that brings U
U=w, ,-F-y(L) closest to zero (which is what it would be if we had guessed
correctly)
d’y * The ¢, and c; that minimize U are the ones for which the
Wis = —I_. 1 Ax dx  (Bending Energy) partial derivatives of U with respective to them are zero:
&
; _W(-x)fr \_ &y | W _o W _o
:(x)—T F=2.;:3+6¢,'3x de, de,
W(x)=W(l- X ) (Using our guess) * Proceed:
2L, Tip Deflection % First, evaluate the integral to get an expression for U:
1 X Toa 3 _ 3 (-w(—g 2 (L 2, 53
=gt Wh’ ﬂ—i)(z":“‘ﬁ‘;‘zﬂ"rd’—f’(ﬂzh +eL) U = EWlr Lf + 22+ 2L -Fle,L’ +el,
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Minimize U (cont) ﬁ-., The Virtual Work-Derived Solution
1 B
* Evaluate the derivatives and set to zero:

d he solution:

o EWRH EWH* (_22F (1Y, _
ac_:ﬂ [ 3 F)L [ 2 Lz]l-e ) (135%’1[2 =t

o 5 W * Solve for tip deflection and obtain the spring constant:
EWh 3 .y 2
P (s 1"'3_1?]4 +[ 3 }'* ( 13EWR®
? L k,=F/y(L
nL)= [11EW.‘:*I )L (L.)= 6L
* Solve the simultaneous equations to get ¢, and cj:
* Compare with previous solution for constant-width cantilever
34 FIL, 24\ F beam (using Euler theory):
*\13 Jeww B ) = AF ) 13% smaller than
* EWhr ¢ tapered-width case
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4%+ Comparison With Finite Element Simulation o Need a Better Approximation?
[ UG Bettie ey m—————————— UG Btk e
* Below: ANSYS finite element model with * Add more terms to the polynomial
L =500 pm W, =20 pm E = 170 GPa * Add other strain energy terms:
h=2pm W, =10 pum % Shear: more significant as the beam gets shorter
Riis e 5 % Axial: more significant as deflections become larger
* Result: (from static * Both of the above remedies make the math more complex,
analysis) so encourage the use of math software, such as
Yk = 0.471 uN/m Mathematica, Matlab, or Maple
* This matches the * Finite element analysis is really just energy minimization
result from energy * If this is the case, then why ever use energy minimization
minimization to 3 analytically (i.e., by hand)?
significant figures % Analytical expressions, even approximate ones, give

insight into parameter dependencies that FEA cannot
% Can compare the importance of different terms
% Should use in tandem with FEA for design
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