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i @ Electrostatic Comb Drive
B} 1" UCBerkeley
* Use of comb-capacitive tranducers brings many benefits

% Linearizes voltage-generated input forces

% (Ideally) eliminates dependence of frequency on dc-bias

% Allows a large range of motion ﬁy Stator  Rotor
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i Comb-Drive Force With 5 Capacitance Expressions
" UBerieleymmmm Ground Plane Correction " UGBerkeley -
* Finger displacement changes not only the capacitance *Case: V. =V, = OV ;
between stator and rotor, but also between these structures * C,, depends on whether or not ¥

and the ground plane — modifies the capacitive energy fingers are engaged
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[Gary Fedder, Ph.D., - : T B
UC Berkeley, 1994] [Gary Fedder, Ph.D., UC Berkeley, 1994]
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5 Comb-Drive Force With %  Simulate to Get Capacitors — Force
" ieBerkeleymmmmmm Ground Plane Correction s " UGBerkeley
* Finger displacement changes not only the capacitance * Below: 2D finite element simulation

between stator and rotor, but also between these structures
and the ground plane — modifies the capacitive energy
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* Signs of electrical

stiffnesses in MEMS:

Comb (x-axis) - k, = O
Comb (z-axis) > k, > O
Parallel Plate — k, < O
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@ Simulated Levitation Force
" UCBerkeley
* Below: simulated vertical force F, vs. z at
- different V,'s [f/ Bill Tang Ph.D., UCB, 1990]
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* Pattern ground plane polysilicon into differentially excited
electrodes to minimize field lines terminating on top of comb

* Penalty: x-axis force is reduced
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i+ Force of Comb-Drive vs. Parallel-Plate
| UCBetkeley

* Comb drive (x-direction)
LV, =V,=V,=1V
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* Differential Parallel-Plate
(y-direction)

P =y

v, LV, =0V, V, =1V
gap=g=1‘un]. F =£i‘:uf1'.p,3
thickness = ¢ = 2 um A N
finger length = L =100 pm Parallel;plafe
overl = . generates a
ap length x =75 pm F .g—:{: 2 much larger
ey _ B % force: but at
F 254 .2 the cost of
o LA linearity
... &
EE €245: Introduction to MEMS Design LecM 12 C. Nguyen 11/18/08 48

Copyright © 2014 Regents of the University of California 6



