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Lecture Outline

• Reading: Senturia, Chpt. 14, Chpt. 16, Chpt. 21
• Lecture Topics:

Gyroscopes
Gyro Circuit Modeling
Minimum Detectable Signal (MDS)

Noise
Angle Random Walk (ARW)
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Gyroscopes
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Classic Spinning Gyroscope

• A gyroscope measures rotation rate, which then gives 
orientation → very important, of course, for navigation

• Principle of operation based on conservation of momentum
• Example: classic spinning gyroscope

Rotor will preserve its angular 
momentum (i.e., will maintain 

its axis of spin) despite 
rotation of its gimbled chassis

Rotor will preserve its angular 
momentum (i.e., will maintain 

its axis of spin) despite 
rotation of its gimbled chassis
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Vibratory Gyroscopes
• Generate momentum by vibrating structures
• Again, conservation of momentum leads to mechanisms for 
measuring rotation rate and orientation

• Example: vibrating mass in a rotating frame
Mass at rest

y-displaced mass

Driven into 
vibration 
along the 
y-axis

Capacitance 
between mass and 
frame = constant

Rotate 
30o

C(t1)

C(t2)

C(t)

x

y

x′

y′

x′

y′
Get an x′
component 
of motion

C(t2) > C(t1)

EE C245: Introduction to MEMS Design LecM 15 C. Nguyen  11/18/08  6

Principle of Operation
• Tuning Fork Gyroscope:
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Basic Vibratory Gyroscope Operation
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Basic Vibratory Gyroscope Operation
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Principle of Operation
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Vibratory Gyroscope Performance

• To maximize the output signal x, 
need:

Large sense-axis mass
Small sense-axis stiffness
(Above together mean low 
resonance frequency)
Large drive amplitude for large 
driven velocity (so use comb-
drive)
If can match drive freq. to 
sense freq., then can amplify 
output by Q times
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MEMS-Based Gyroscopes
Vibrating Ring GyroscopeVibrating Ring Gyroscope

[[NajafiNajafi, Michigan], Michigan]

Laser
Polarizer

Rb/Xe Cell

Photodiode3.2 mm

1 mm

1 mm
tθ&

Tuning Fork Gyroscope Tuning Fork Gyroscope 
[Draper Labs.][Draper Labs.]

Tuning Fork Gyroscope Tuning Fork Gyroscope 
[[AyaziAyazi, GA Tech.], GA Tech.]

Nuclear 
Magnetic 
Resonance 

Gyro [NIST]
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Sense 
Electrodes

Drive 
Electrode

Tuning 
Electrodes

Tuning 
Electrodes

Quadrature Cancellation 
Electrodes

Drive 
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Sense

Sense 
Electrodes

Drive Mode

Sense Mode

• In-plane drive and sense modes pick up 
z-axis rotations

•Mode-matching for maximum output 
sensitivity

• From [Zaman, Ayazi, et al, MEMS’06]

MEMS-Based Tuning Fork Gyroscope
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[Zaman, Ayazi, et al, MEMS’06]
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MEMS-Based Tuning Fork Gyroscope
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• Drive and sense axes must be stable or at least track one 
another to avoid output drift
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Problem: if drive 
frequency changes 
relative to sense 
frequency, output 

changes bias drift

Problem: if drive 
frequency changes 
relative to sense 
frequency, output 

changes bias drift
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Need: small or matched drive 
and sense axis temperature 

coefficients to suppress drift
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MEMS-Based Tuning Fork Gyroscope


