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Lecture Outline

• Reading: Senturia, Chpt. 3; Jaeger, Chpt. 2, 3, 6
Example MEMS fabrication processes
Oxidation
Film Deposition

Evaporation
Sputter deposition
Chemical vapor deposition (CVD)
Plasma enhanced chemical vapor deposition (PECVD)
Epitaxy
Atomic layer deposition (ALD)
Electroplating
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MEMS Fabrication
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Making Mechanical Devices
• How best does one make a 

mechanical product?
• Assembly line production?

Pick and place parts
Used for many macroscopic 
mechanical products
Robotic automation greatly 
reduces cost

• Problem: difficult to do this with 
MEMS-scale parts (but not 
impossible, as we’ll soon see …)

• Solution: borrow from integrated 
circuit (IC) transistor technology

Use monolithic wafer-level 
fabrication methods
Harness IC’s batch methods, 
where multiple devices are 
achieved all at once

Automobile Assembly Line

CMOS Integrated Circuit Wafer
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Silicon Substrate

Polysilicon Surface-Micromachining

• Uses IC fabrication 
instrumentation exclusively

• Variations: sacrificial layer 
thickness, fine- vs. large-
grained polysilicon, in situ
vs. POCL3-dopingSilicon Substrate

Free-
Standing

Polysilicon
Beam

Hydrofluoric
Acid

Release
Etchant

Wafer

300 kHz Folded-Beam 
Micromechanical Resonator 

Nitride
Interconnect
Polysilicon

Sacrificial
Oxide Structural

PolysilconIsolation
Oxide
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Silicon Substrate

Aluminum

Electroplating: Metal MEMS
• Use electroplating to obtain 

metal μstructures
• When thick: call it “LIGA”
• Pros: fast low temp 

deposition, very conductive
• Cons: drift, low mech. Q

but may be solvable?

Nickel

Silicon Substrate

Suspended Nickel
MicrostructureElectrode

Ti/Au

Isolation
Si3N4

Wafer

Aluminum
Release
Etchant

Photoresist
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Silicon Substrate

Glass Substrate

Bulk Micromachining and Bonding

• Use the wafer itself as the 
structural material

• Adv: very large aspect 
ratios, thick structures

• Example: deep etching and 
wafer bonding

Silicon SubstrateSilicon Substrate

Glass Substrate

Silicon Substrate

Metal Interconnect
Anchor

Movable
Structure Electrode

Micromechanical
Vibrating Ring Gyroscope

1 mm

Microrotor
(for a microengine)

[Najafi, Michigan] [Pisano, UC Berkeley][Pisano, UC Berkeley]
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Oxidation
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Thermal Oxidation of Silicon

• Achieved by heating the silicon wafer to a high temperature 
(~900oC to 1200oC) in an atmosphere containing pure oxygen 
or water vapor

• Enabling reactions:

For dry oxygen: For water vapor:

Si + O2 → SiO2

Schematically:

Si + 2H2O → SiO2 + 2H2

High T (~900oC – 1200oC)

In dry O2
or

Water vapor

Si Wafer Si Wafer

56%

44%

→ →
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Oxidation Modeling

(1) Initially:  (no oxide @ surface)

(2) As oxide builds up:

Growth rate governed more 
by rate of diffusion to the 
silicon-oxide interface

gas stream

Si
oxide

Reactant must diffuse to Si 
surface where the oxidation 
reaction takes place

gas stream

Si
Growth rate determined by 
reaction rate @ the surface
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Oxidation Modeling (cont.)

x
txND

∂
∂

−
),(

Diffusion coeff. 
[in μm/hr or m/s]

N reactant concentration

NO

J
Ni

Xox

SiO2

surface Si-SiO2 interface
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Ni = reactant conc. at Si-SiO2 interface
[Fick’s 1st

Law of 
Diffusion]

J = reactant flux =

Si

In the SiO2:
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Assumption that the 
reactant does not 
accumulate in the oxide.[in # particles/(cm2 s)]•

(1)
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Oxidation Modeling (cont.)

At the Si-SiO2 interface:
Oxidation rate Ni J    Ni (2)
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Oxidation Modeling (cont.)
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# of molecules of oxidizing 
species incorporated into a 
unit volume of oxide
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Oxide Thickness Versus Time
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[Xi = initial oxide thickness]

Result:
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Oxidation Modeling (cont.)
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For shorter times:

Taylor expansion (first 
term after 1’s cancel)

oxide growth 
limited by reaction 
at the Si-SiO2
interface

linear growth rate constant

For long oxidation times: oxide growth diffusion-limited

τ>>t Parabolic 
rate constant
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Oxidation Rate Constants

• Above theory is great … but usually, the equations are not 
used in practice, since measured data is available

Rather, oxidation growth charts are used
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Oxidation Growth Charts


