

Copyright @ 2014 Regents of the University of California

Copyright @ 2014 Regents of the University of California

Oxidation Modeling (cont.)	
Find an expression for $X_{OX}(t)$: oxidizing	flux
Rate of change of oxide $\left\{ = \frac{dX_{OX}}{dt} = \frac{J}{M} = \frac{DN_O}{X_{OX} + M} \right\}$	$\frac{dM}{D/k_s}$ (3)
# of molecules of oxidizing species incorporated into a unit volume of oxide $\begin{cases} = 2.2 \times 10^{22} cm^{-3} \\ = 4.4 \times 10^{22} cm^{-3} \end{cases}$	for O_2 for H_2O
Solve (3) for $X_{OX}(t)$: [Initial condition $X_{OX}(t=0)$	$\mathbf{D}) = X_i \mathbf{J}$
$\frac{dX_{OX}}{dt} = \frac{DN_O/M}{X_{OX} + D/k_s} \text{ar} \int_{X_i}^{X_{OX}} \left(X_{OX} + \frac{D}{k_s}\right) dX_{OX} = \int_0^t \frac{1}{2} \frac{dX_{OX}}{dt}$	$\frac{DN_o}{M} dt$
EE C245: Introduction to MEMS Design Leck 3 C. Nguyen 8/20/0	9 13

UCBerkeley	Oxide Thickness Versus Time
<u>Result</u> :	
addit (to ga	tional time required f time required to grow X_i o from $X_i \rightarrow X_{OY}$ f [X = initial oxide thickness]
X _{OX}	$(t) = \frac{A}{2} \left\{ \left[1 + \frac{4B}{A^2} (t + \tau) \right]^{\frac{1}{2}} - 1 \right\}$
where	$A = \frac{2D}{k_s} \qquad \qquad \tau = \frac{X_i^2}{B} + \frac{X_i}{(B/A)}$
	$B = \frac{2DN_o}{M} \qquad D = D_o \exp\left(-\frac{E_A}{kT}\right)$
	i.e., D governed by an Arrhenius relationship \rightarrow temperature dependent
EE C245: Intro	duction to MEMS Design LecM 3 C. Nguyen 8/20/09 14

Table 6–2	Rate constants describing (111) silicon oxidation kinetics at 1 Atm total pressure. For the corresponding values for (100) silicon, all C2 values should be divided by 1.68.		
Ambient	B	B/A	
Dry O ₂	$C_1 = 7.72 \times 10^2 \mu \mathrm{m}^2 \mathrm{hr}^{-1}$	$C_2 = 6.23 \times 10^6 \mu\mathrm{m}\mathrm{hr}^{-1}$	
	$E_1 = 1.23 \text{ eV}$	$E_2 = 2.0 \mathrm{eV}$	
Wet O ₂	$C_1 = 2.14 \times 10^2 \mu \mathrm{m}^2 \mathrm{hr}^{-1}$	$C_2 = 8.95 \times 10^7 \mu\mathrm{m}\mathrm{hr}^{-1}$	
	$E_1 = 0.71 \text{ eV}$	$E_2 = 2.05 \text{ eV}$	
H ₂ O	$C_1 = 3.86 \times 10^2 \mu \mathrm{m}^2 \mathrm{hr}^{-1}$	$C_2 = 1.63 \times 10^8 \mu\mathrm{m}\mathrm{hr}^{-1}$	
	$E_1 = 0.78 \mathrm{eV}$	$E_2 = 2.05 \mathrm{eV}$	
ve theor 1 in prac 2ather, (ry is great but usually, tice, since measured dat oxidation growth charts o	the equations are i a is available are used	

Copyright @ 2014 Regents of the University of California

