

Copyright @ 2014 Regents of the University of California

CTN 2/14/14

<u> Berkeley</u>	emistries			
For some p	oopular films:			
Material	Wet etchant	Etch rate [nm/min]	Dry etchant	Etch rate [nm/min]
Polysilicon	HNO ₃ :H ₂ O: NH ₄ F	120-600	SF ₆ + He	170-920
Silicon nitride	H ₃ PO ₄	5	SF ₆	150-250
Silicon dioxide	HF	20-2000	CHF ₃ + O ₂	50-150
Aluminum	H ₃ PO ₄ :HNO ₃ : CH ₃ COOH	660	Cl ₂ + SiCl ₄	100-150
Photoresist	Acetone	>4000	O ₂	35-3500
Gold	кі	40	n/a	n/a

 Masking material (could be PR, could be

oxide, etc.)

Depth determined by

*C*TN 2/14/14

CTN 2/14/14

Successive Diffusions
 For actual processes, the junction/diffusion formation is only one of many high temperature steps, each of which contributes to the final junction profile Typical overall process: Selective doping Implant → effective (Dt)₁ = (ΔR_p)²/2 (Gaussian) Drive-in/activation → D₂t₂ Other high temperature steps (eg., oxidation, reflow, deposition) → D₃t₃, D₄t₄, Each has their own Dt product Then, to find the final profile, use
$\left(Dt ight)_{tot}=\sum_i D_i t_i$ in the Gaussian distribution expression.
EE C245: Introduction to MEMS Design LecM 4 C. Nguyen 8/20/09 72

)	ll@Berkelev
(as usual, an Arrhenius relationship)	$D = D_o \exp\left(-\frac{E_A}{kT}\right)$
on Coefficient Values for a Number of Impurities. $D_0(\text{cm}^2/\text{sec}) = E_A(\text{eV})$	Table 4.1 Typical Diffusior Element
10.5 3.69	В
8.00 3.47	Al
3.60 3.51	Ga
16.5 3.90	In
10.5 3.69	Р
0.32 3.56	As
5.60 3.95	Sb
5.60 3.95	Sb

Copyright @ 2014 Regents of the University of California

CTN 2/14/14

