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i % More General Geometries
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* Euler-Bernoulli beam theory works well for simple geometries
* But how can we handle more complicated ones?

* Example: tapered cantilever beam

* Objective: Find an expression for displacement as a function
of location x under a point load F applied at the tip of the
free end of a cantilever with tapered width W(x)

Energy Methods
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%  Solution: Use Principle of Virtual Work
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* In an energy-conserving system (i.e., elastic materials), the
energy stored in a body due to the quasi-static (i.e., slow)
action of surface and body forces is equal to the work done
by these forces ..

* Implication: if we can formulate stored energy as a function
of the deformation of a mechanical object, then we can
determine how an object responds to a force by determining
the shape the object must take in order to minimize the
difference U between the stored energy and the work done
by the forces:

U = Stored Energy - Work Done

* Key idea: we don't have to reach U = O to produce a very
useful, approximate analytical result for load-deflection
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; Shear Strain Energy

U e
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=

Shear Modulus

* See W.C. Albert, "Vibrating Quartz Crystal Beam
Accelerometer,” Proc. ISA Int. Instrumentation Symp., May
1982, pp. 33-44

s  Applying the Principle of Virtual Work
["UcBerkeley,
* Basic Procedure:
% Guess the form of the beam deflection under the applied
loads
% Vary the parameters in the beam deflection function in
order to minimize:

Assumes
Sum strain energles pomt load

U= ZW ZFu

Dcsplacemen‘r
at point load

% Find minima by simply setting derivatives to zero

* See Senturia, pg. 244, for a general expression with
distrubuted surface loads and body forces

Copyright © 2015 Regents of the University of California

5 Example: Tapered Cantilever Beam
" UCBerkeley
* Objective: Find an expression for displacement as a function
of location x under a point load F applied at the tip of the
free end of a cantilever with tapered width W(x)

Tup\imnf ;Hﬂilafeu‘a' W)
wi Z e W)= W(I—ZL )
50% taper €
jx x |_£" Adjustable
] parameters:
:,:: y l_) X minimize U
Iy

2 3
X)=C, X" +C3X
* Start by guessing the solution ———— y(x)=¢, 3

% It should satisfy the boundary conditions
% The strain energy integrals shouldn't be too tedious
* This might not matter much these days, though, since
one could just use matlab or mathematica
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“ Strain Energy And Work By F ? Find ¢, and c; That Minimize U
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* Minimize U — basically, find the ¢, and c; that brings U
U=w,_,-F-y(L) closest to zero (which is what it would be if we had guessed
correctly)
d’y * The ¢, and c; that minimize U are the ones for which the
W = —I- 1 Ax P dx  (Bending Energy) partial derivatives of U with respective to them are zero:
I()_W(x)h \aﬂy . E_g ﬂ_o
12 AE - 26t 6ex de, de,
W(xy=W(l- ) (Using our guess) * Proceed:
2L, Tip Deflection % First, evaluate the integral to get an expression for U:
1 X : Toa 3 _ 3 (-w(—g 2 (L 2, 53
=g EWh? {l—i)(2c1+ﬁc;x)ldx—F{c2L, +eL) U=EWh L,. + 2L+ L -Fle, L oL,
0 3
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Minimize U (cont) f, The Virtual Work-Derived Solution
ujﬂen@m—
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* Evaluate the derivatives and set to zero:

tkeley
* And the solution:

. 3 3 24F 7
(e () ot G

o 5 W * Solve for tip deflection and obtain the spring constant:
EWhe. —F IL® .y 2
P (s 1"5‘_1”]4 +[ 3 ]L° ( 13EWR®
? L k,=F/y(L
nL)= [11EW.‘:*I )L (L.)= 6oL
* Solve the simultaneous equations to get ¢, and cj:
* Compare with previous solution for constant-width cantilever
34 FIL, 24\ F beam (using Euler theory):
*\13 Jeww B ) =AY\ 13% smaller than
* EWhr ¢ tapered-width case
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4%+ Comparison With Finite Element Simulation o Need a Better Approximation?
[ UG Bertie ey — UG Betke e .
* Below: ANSYS finite element model with * Add more terms to the polynomial
L =500 pm W, =20 pm E = 170 GPa * Add other strain energy terms:
h=2pm W, =10 pum % Shear: more significant as the beam gets shorter
Riis e 5 % Axial: more significant as deflections become larger
* Result: (from static * Both of the above remedies make the math more complex,
analysis) so encourage the use of math software, such as
Yk = 0.471 uN/m Mathematica, Matlab, or Maple
* This matches the * Finite element analysis is really just energy minimization
result from energy * If this is the case, then why ever use energy minimization
minimization to 3 analytically (i.e., by hand)?
significant figures % Analytical expressions, even approximate ones, give

insight into parameter dependencies that FEA cannot
% Can compare the importance of different terms
% Should use in tandem with FEA for design
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