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Voltage-Controllable Center Frequency

Gap
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Microresonator Thermal Stability

• Thermal stability of poly-Si micromechanical resonator is 
10X worse than the worst case of AT-cut quartz crystal

−1.7ppm/oC

Poly-Si µresonator
-17ppm/oC
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• Use a temperature dependent mechanical stiffness to null 
frequency shifts due to Young’s modulus thermal dep.

[W.-T. Hsu, et al., IEDM’00]

• Problems:

�stress relaxation

�compromised design 

flexibility

[Hsu et al, IEDM’00]

[Hsu et al IEDM 2000]

Geometric-Stress Compensation
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Voltage-Controllable Center Frequency

Gap
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Excellent Temperature Stability

Uncompensated 
µresonator

−1.7ppm/oC

100
[Ref: Hafner]
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Top Metal 
Electrode
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On par with 
quartz!

On par with 
quartz!

[Hsu [Hsu et alet al MEMSMEMS’’02]02]
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• Slits help to release the stress generated by lateral 
thermal expansion � linear TCf curves � –0.24ppm/oC!!!
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[Hsu et al MEMS’02]

Measured ∆f/f vs. T for k
e
-

Compensated µResonators
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Can One Cancel ke w/ Two Electrodes?

•What if we don’t like the 
dependence of frequency on VP?

• Can we cancel ke via a differential 
input electrode configuration?

• If we do a similar analysis for Fd2

at Electrode 2:
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Subtracts from the 
Fd1 term, as expected

Adds to the quadrature term → ke’s add, 
no matter the electrode configuration!
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Problems With Parallel-Plate C Drive

•Nonlinear voltage-to-force 
transfer function
�Resonance frequency becomes 

dependent on parameters (e.g., 
bias voltage VP)

�Output current will also take on 
nonlinear characteristics as 
amplitude grows (i.e., as x 
approaches do)

�Noise can alias due to 
nonlinearity

• Range of motion is small
�For larger motion, need larger 

gap … but larger gap weakens 
the electrostatic force

�Large motion is often needed 
(e.g., by gyroscopes, 
vibromotors, optical MEMS)
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Electrostatic Comb Drive
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Electrostatic Comb Drive

• Use of comb-capacitive tranducers brings many benefits
�Linearizes voltage-generated input forces
� (Ideally) eliminates dependence of frequency on dc-bias
�Allows a large range of motion

Comb-Driven Folded Beam Actuator

x

y

z

Stator Rotor
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Comb-Drive Force Equation (1st Pass)

Top View

Side View
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Lateral Comb-Drive Electrical Stiffness

• Again:

•No (∂C/∂x) x-dependence → no electrical stiffness: ke = 0!

• Frequency immune to changes in VP or gap spacing!
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Typical Drive & Sense Configuration

x

y

z
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Comb-Drive Force Equation (2nd Pass)

• In our 1st pass, we accounted for
�Parallel-plate capacitance between stator and rotor

• … but neglected:
�Fringing fields
�Capacitance to the substrate

• All of these capacitors must be included when evaluating the 
energy expression!

Stator Rotor

Ground 
Plane
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• Finger displacement changes not only the capacitance 
between stator and rotor, but also between these structures 
and the ground plane → modifies the capacitive energy

Comb-Drive Force With 
Ground Plane Correction

[Gary Fedder, Ph.D., 
UC Berkeley, 1994]
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Capacitance Expressions

• Case: Vr = VP = 0V

• Csp depends on whether or not 
fingers are engaged

[Gary Fedder, Ph.D., UC Berkeley, 1994]

Region 2 Region 3

Capacitance per 
unit length
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• Finger displacement changes not only the capacitance 
between stator and rotor, but also between these structures 
and the ground plane → modifies the capacitive energy

Comb-Drive Force With 
Ground Plane Correction

[Gary Fedder, Ph.D., UC Berkeley, 1994]
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Simulate to Get Capacitors → Force

• Below: 2D finite element simulation

20-40% reduction of Fe,x
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Vertical Force (Levitation)

• For Vr = 0V (as shown):
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Simulated Levitation Force

• Below: simulated vertical force Fz vs. z at 
different VP’s [f/ Bill Tang Ph.D., UCB, 1990] 
�See that Fz is roughly proportional to –z for z 

less than zo
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→ it’s like an electrical stiffness 
that adds to the mechanical 
stiffness

Electrical 
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Vertical Resonance Frequency

• Signs of electrical 
stiffnesses in MEMS:
Comb (x-axis) → ke = 0
Comb (z-axis) → ke > 0
Parallel Plate → ke < 0
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Suppressing Levitation

• Pattern ground plane polysilicon into differentially excited 
electrodes to minimize field lines terminating on top of comb

• Penalty: x-axis force is reduced
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Force of Comb-Drive vs. Parallel-Plate

• Comb drive (x-direction)
�V1 = V2 = VS = 1V

• Differential Parallel-Plate        
(y-direction)
�V1 = 0V, V2 = 1V

Parallel-plate 
generates a 
much larger 
force; but at 
the cost of 
linearity
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