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in Excellent Temperature Stability
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* Slits help to release the stress generated by lateral
thermal expansion I linear TC; curves [ -0.24ppm/°Clll

f»ﬁ Can One Cancel k, w/ Two Electrodes?
" UCBe

UCBerkeley
* What if we don't like the

dependence of frequency on V,? o
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f»ﬁ Problems With Parallel-Plate C Drive
uc

[ UCBerkeley

* Nonlinear voltage-to-force

X —> x
transfer function
% Resonance frequency becomes F, k,,
dependent on parameters (e.g., F,
bias voltage V;) \ _W
% Output current will also take on d d
nonlinear characteristics as A\ |3
amplitude grows (i.e., as x

approaches d,)
% Noise can alias due to
nonlinearity

* Range of motion is small
% For larger motion, need larger
gap .. but larger gap weakens
the electrostatic force
% Large motion is often needed l
(e.g., by gyroscopes,
vibromotors, optical MEMS) Vp :I_:
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fﬁ” fﬁ” Electrostatic Comb Drive
Bl G e s} * UGBerkeley
* Use of comb-capacitive tranducers brings many benefits
Y Linearizes voltage-generated input forces
% (Ideally) eliminates dependence of frequency on dc-bias
% Allows a large range of motion %y Stator  Rotor

Input Comb Vibrating Shuttle Z X
. Drive Mass Anchors ~__

Electrostatic Comb Drive

SLLERRRRREER A

Folded Beam %gid‘Trus‘s
Suspension

Output Sense

Electrode L= ?*
Comb-Driven Folded Beam Actuator |—
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f@ Comb-Drive Force Equation (15' Pass) ~ Lateral Comb-Drive Electrical Stiffness
* UCiBerkeley UCBerkeley
-
Top View < Top View <
& >
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Side View < VP =L Vl Side View <
L 4 h L
.zg._A. then W= (8 » Ty v~
o)+ [ T] ) " 'r * Again: ((x)= 2Nehx _)G_C = ZNeh
™ _2e&hn 2 g d ox  d
5‘ v 2ax(VP ) 2 T.T( 2Vpn % )% Ve = By . )
( . * No (6C/0x) x-dependence — no electrical stiffness: k, = Ol
uf wait! Tz (gnores offor practicd effed! (No depondoce ! (near!) * Frequency immune to changes in V, or gap spacing!
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n Typical Drive & Sense Configuration i Comb-Drive Force Equation (2" Pass)
UG Berkeley UG B g
2-port Lateral Microresonator N +  phelo Higges * In our 15" pass, we accounted for

% Parallel-plate capacitance between stator and rotor
* .. but neglected:
% Fringing fields
% Capacitance to the substrate
* All of these capacitors must be included when evaluating the
energy expression!
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Comb-Drive Force With Capacitance Expressions

hlwﬂfzﬁm'.w—Gr'ound Plane Correction s “lonmeny
* Finger displacement changes not only the capacitance g Case' V.=V, =0V
between stator and rotor, but also between these structures .» depends on whether or not
and the ground plane — modifies the capacitive energy fmge,.s are engaged
oW’ 1dC, 1dC, 1dC,
E— =2V By iy n (] ) C, =N, x+C (L-x)]
dx 2 dx 2 dx 2 dx =2 P\ P
Al v/k_\ c i
stator (s) C.=NC" apacitance per
s unit length
rotor (r) .
Region 2 Region 3

[6ary Fedder, Ph.D., =
ground plane (p) UC Berkeley, 1994] [Gary Fedder, Ph.D., UC Berkeley, 1994]
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i Comb-Drive Force With i Simulate to Get Capacitors — Force
" UeBetkely====== Ground Plane Correction LBk
* Finger displacement changes not only the capacitance * Below: 2D finite element simulation
between stator and rotor, but also between these structures 50— T ' T T ' 50
and the ground plane — modifies the capacitive energy ol \ T T T T T s
\ /// rs+Uspe
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A[ X 2 ' p.e P 8 D g ere g
(for Ue=Vp+9) Y g
20-40% reduction of F, ,
g 5 -I1 -6.5 (I) Ol.5 ‘II 1‘,5 0
ground plane (p) [6ary Fedder, Ph.D., UC Berkeley, 1994] Vertical displacement of rotor, Az[um]
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n Vertical Force (Levitation) n Simulated Levitation Force
“UCBerkeley x “UCBerkeley
L * Below: simulated vertical force F, vs. z at
v F ] different V,'s [f/ Bill Tang Ph.D., UCB, 1990]
!Sztlgggg%rg %gggggg 2[4“ % See that F, is r.'o'uglfly pr'opor'rior‘ml to -z for z
. less than z, — it's like an electrical stiffness
that adds to the mechanical
i | - stiffness
14 ; - v 5 Vp= 10V |ff
B Movable . Vp=8V y2 (Z ) k,(z, - z)
/ . 3 Vp=6V z,
%  Ground Plane Electrical
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ow' 1dCy, 2 1 dcrp 2 1 dcC,, 5 Equilibrium levitation, zg
e ==+ vies—,-7,) .
’ 0z 2 dz 2 dz 2 / 3 4
' 0 T T : "
. 1 d\Ci,.+C)| » 0 1 2 v z
For V. = OV (as shown): F; o= ENX —dz Vv, Vertical levitation [um]
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n Vertical Resonance Frequency n Suppressing Levitation
" UGBerkeley " UCBerkeley
Vertical \ ! i /
resonance > _ k. +k, where k — e 2 . N P
frequency () k. Az, | i N
(1)1/ Dz ) ) 'i)j R ': (“ v"I /’ L :
A Vertical Lateral Stationary ! 4 LD - Stationary
resonance = pesonance -~ Electrode | Electrode
frequency at  frequency !
Vp = OV ,
* Signs of electrical v i \ i 4
stiffnesses in MEMS: . +
COmb (X‘Oxis) - ke =0 iR q 2 T
1 Comb (z-axis) > k, > O % % Z
7 Parallel Plate — k, < O =
/ * Pattern ground plane polysilicon into differentially excited
pd - electrodes to minimize field lines terminating on top of comb
Applied voltage e * Penalty: x-axis force is reduced
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W Force of Comb-Drive vs. Parallel-Plate
UCE

‘UCBerkeley

* Comb drive (x-direction)
LV, =V,=V,=1V
R =ty

Y 2d,

* Differential Parallel-Plate
(y-direction)

Lv, =0V, V,=1V

1 € hL
Gap = d, = 1 um e
T_hlckness =h=2pm 2 d, Parallel-plate
Finger Length = L; = 100 um 1 ¢ hL generates a
Finger Overlap = L, = 75 pm e d sz much larger
F, 2 4d; % force: but at
T eh the cost of
Fox 18N V? linearity
2d,
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