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Lecture Outline

• Reading: Senturia Chpt. 16
• Lecture Topics:
Minimum Detectable Signal
Noise

Circuit Noise Calculations
Noise Sources
Equivalent Input-Referred Noise

Gyro MDS
Equivalent Noise Circuit
Example ARW Determination
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Determining Sensor Resolution
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Minimum Detectable Signal (MDS)

•Minimum Detectable Signal (MDS): Input signal level when 
the signal-to-noise ratio (SNR) is equal to unity

• The sensor scale factor is governed by the sensor type
• The effect of noise is best determined via analysis of the 
equivalent circuit for the system
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Noise
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Noise

•Noise: Random fluctuation 
of a given parameter I(t)

• In addition, a noise 
waveform has a zero 
average value

Avg. value 
(e.g. could be 
DC current)

ID

I(t)

t

•We can’t handle noise at instantaneous times
• But we can handle some of the averaged effects of random 
fluctuations by giving noise a power spectral density 
representation

• Thus, represent noise by its mean-square value:
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Noise Spectral Density

•We can plot the spectral density of this mean-square value:

f
i


2

[units2/Hz]

One-sided spectral density
 used in circuits
 measured by spectrum 

analyzers

Two-sided spectral density 
(1/2 the one-sided)

Often used in 
systems courses

2i = integrated mean-square 
noise spectral density over 
all frequencies (area under 
the curve)
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Noise Sources
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Thermal Noise

• Thermal Noise in Electronics: (Johnson noise, Nyquist noise)
Produced as a result of the thermally excited random 

motion of free e-’s in a conducting medium
Path of e-’s randomly oriented due to collisions

• Thermal Noise in Mechanics: (Brownian motion noise)
Thermal noise is associated with all dissipative processes 

that couple to the thermal domain
Any damping generates thermal noise, including gas 

damping, internal losses, etc.

• Properties:
Thermal noise is white (i.e., constant w/ frequency)
Proportional to temperature
Not associated with current
Present in any real physical resistor
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• Thermal Noise can be shown to be represented by a series 
voltage generator      or a shunt current generator

Circuit Representation of Thermal Noise
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Note: These are 
one-sided mean-
square spectral 
densities!  To make 
them 2-sided, must 
divide by 2.
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and where these are spectral densities. 
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Noise in Capacitors and Inductors?

• Resistors generate thermal noise
• Capacitors and inductors are noiseless  why?

•Now, add a resistor:
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Can oscillate forever

Decays to zero
But this violates the laws 
of thermodynamics, which 
require that things be in 
constant motion at finite 
temperature

Need to add a forcing function, like a noise voltage     to keep
the motion going  and this noise source is associated with R
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Why 4kTR?

•Why is                (a heuristic argument)
• The Equipartition Theorem of Statistical Thermodynamics
says that there is a mean energy (1/2)kT associated w/ 
each degree of freedom in a given system

• An electronic circuit possesses two degrees of freedom:
Current, i, and voltage, v
Thus, we can write:

• Similar expressions can be written for mechanical systems
For example: for displacement, x
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• Associated with direct current flow in 
diodes and bipolar junction transistors

• Arises from the random nature by 
which e-’s and h+’s surmount the 
potential barrier at a pn junction

• The DC current in a forward-biased 
diode is composed of h+’s from the p-
region and e-’s from the n-region that 
have sufficient energy to overcome 
the potential barrier at the junction 
 noise process should be 
proportional to DC current

• Attributes:
Related to DC current over a 

barrier
Independent of temperature
White (i.e., const. w/ frequency)
Noise power ~ ID & bandwidth
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Flicker (1/f) Noise

• In general, associated w/ random trapping & release of 
carriers from “slow” states

• Time constant associated with this process gives rise to a 
noise signal w/ energy concentrated at low frequencies

•Often, get a mean-square noise spectral density that looks 
like this:
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Shot 
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1/f Noise

ID = DC current
K = const. for a particular device
a = 0.5  2
b ~ 1

1/f Noise Corner Frequency
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Back to Determining Sensor 
Resolution
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Sense 
Electrodes

Tuning 
Electrodes

Sense 
Electrodes

Tuning 
Electrodes

Drive 
Electrode

z


Drive

Sense

[Zaman, Ayazi, et al, MEMS’06]
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Drive 
Voltage 
Signal

Drive Axis Equivalent Circuit

e:1
cxlx rx

Co1

1:e

Co2

io iixd

Drive 
Oscillation 
Sustaining 
Amplifier

To Sense Amplifier 
(for synchronization)

180o

180o

• Generates drive displacement 
velocity xd to which the Coriolis
force is proportional
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Drive Mode

Sense Mode

Drive-to-Sense Transfer Function
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Gyro Readout Equivalent Circuit
(for a single tine)
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Noise Sources

Gyro Sense Element 
Output Circuit

Signal Conditioning Circuit 
(Transresistance Amplifier)

• Easiest to analyze if all noise sources are summed at a 
common node
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Minimum Detectable Signal (MDS)

•Minimum Detectable Signal (MDS): Input signal level when 
the signal-to-noise ratio (SNR) is equal to unity

• The sensor scale factor is governed by the sensor type
• The effect of noise is best determined via analysis of the 
equivalent circuit for the system
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Move Noise Sources to a Common Point

•Move noise sources so that all sum at the input to the 
amplifier circuit (i.e., at the output of the sense element)

• Then, can compare the output of the sensed signal directly 
to the noise at this node to get the MDS

Sensor 
Scale 
Factor

Sensed 
Signal

Circuit 
Gain

Sensor 
Noise

Circuit 
Input-

Referred 
Noise

Sensor
Signal Conditioning 

Circuit

Output

Includes 
desired 
output 
plus 
noise


