

Copyright © 2015 Regents of the University of California

Shot Noise • Associated with direct current flow in I_D diodes and bipolar junction transistors Arises from the random nature by (h+) (h+) which e^{-'}s and h^{+'}s surmount the 90000 potential barrier at a pn junction V_D The DC current in a forward-biased e n diode is composed of h⁺'s from the pregion and e^{-'}s from the n-region that pn-junction have sufficient energy to overcome the potential barrier at the junction \rightarrow noise process should be proportional to DC current $l_n^ =2qI_D$ Attributes: Δf Selated to DC current over a barrier Charge on an e-♥ Independent of temperature (=1.6x10-19C) ♦ White (i.e., const. w/ frequency) ♦ Noise power ~ I_D & bandwidth **DC** Current EEC247B/MEC218: Introduction to MEMS Design C. Nguyen 11/18/08

Copyright © 2015 Regents of the University of California

CTN 4/23/15

Copyright © 2015 Regents of the University of California

