Lecture 9m2: Mechanics of Materials

Prof. Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

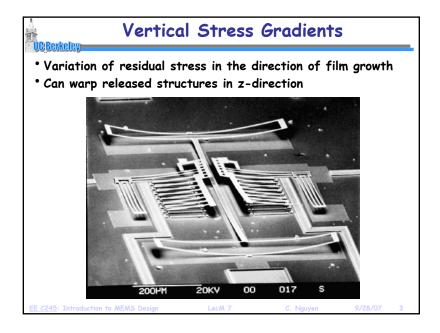
Lecture Module 7: Mechanics of Materials

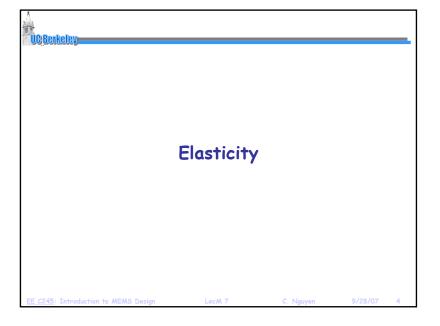
EE C245: Introduction to MEMS Design

7 C No

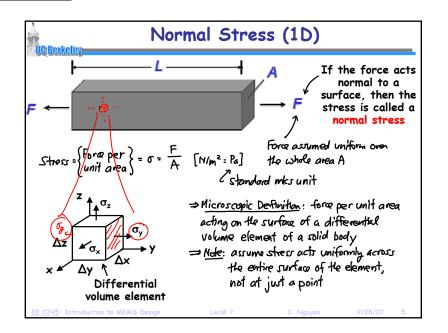
9/28/07

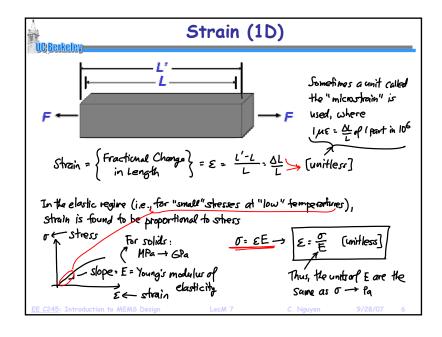
• Reading: Senturia, Chpt. 8 • Lecture Topics: \$ Stress, strain, etc., for isotropic materials \$ Thin films: thermal stress, residual stress, and stress gradients \$ Internal dissipation \$ MEMS material properties and performance metrics

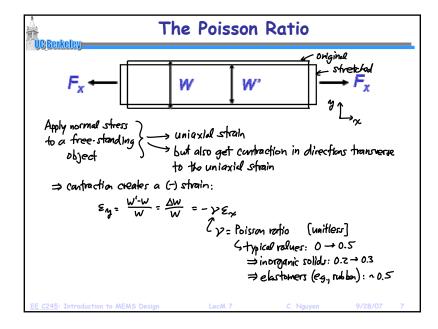


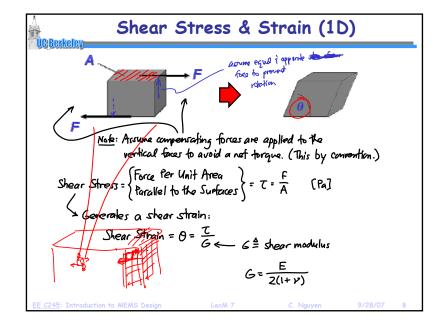


EE 247B/ME 218: Introduction to MEMS Design Lecture 9m2: Mechanics of Materials

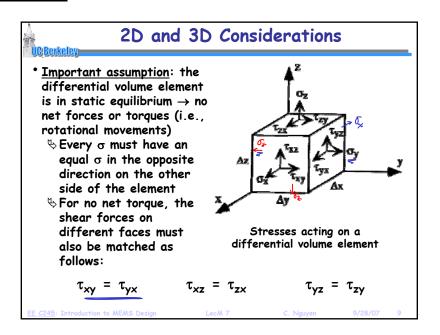


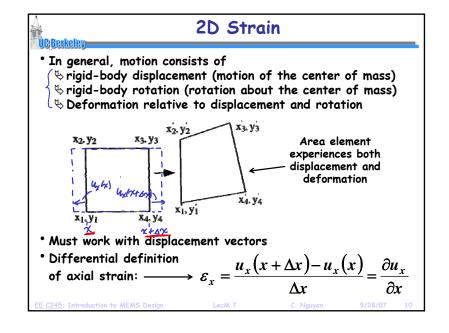


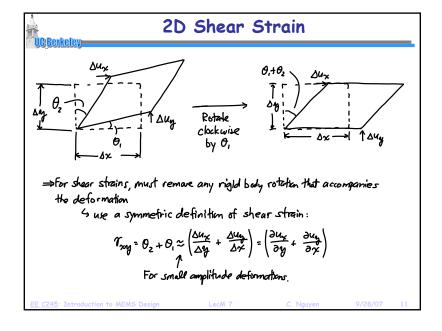


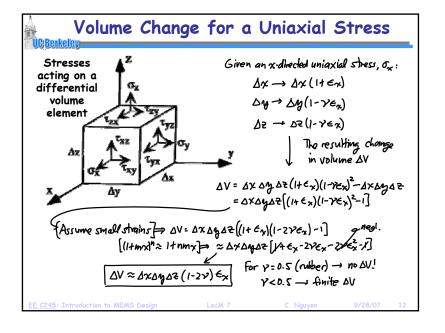


Lecture 9m2: Mechanics of Materials









EE 247B/ME 218: Introduction to MEMS Design Lecture 9m2: Mechanics of Materials

Isotropic Elasticity in 3D

- Isotropic = same in all directions
- The complete stress-strain relations for an isotropic elastic solid in 3D: (i.e., a generalized Hooke's Law)

$$\varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \nu \left(\sigma_{y} + \sigma_{z} \right) \right] \qquad \gamma_{xy} = \frac{1}{G} \tau_{xy}$$

$$\gamma_{xy} = \frac{1}{G} \tau_{xy}$$

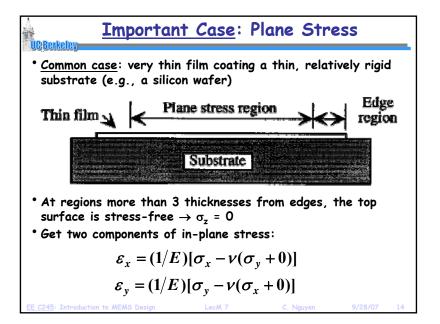
$$\varepsilon_{y} = \frac{1}{F} \left[\sigma_{y} - \nu \left(\sigma_{z} + \sigma_{x} \right) \right] \qquad \gamma_{yz} = \frac{1}{G} \tau_{yz}$$

$$u_{yz} = \frac{1}{G} \tau_{yz}$$

$$\varepsilon_z = \frac{1}{E} \left[\sigma_z - \nu \left(\sigma_x + \sigma_y \right) \right] \qquad \gamma_{zx} = \frac{1}{G} \tau_{zx}$$

$$u_{zx} = \frac{1}{G} \tau_{zx}$$

Basically, add in off-axis strains from normal stresses in other directions



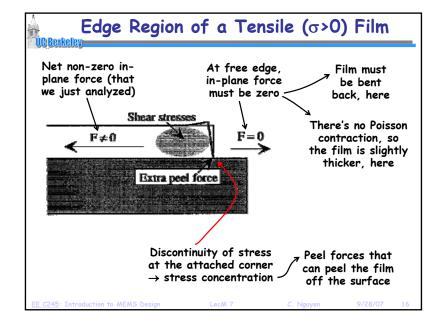
Important Case: Plane Stress (cont.)

- Symmetry in the xy-plane $\rightarrow \sigma_x = \sigma_y = \sigma$
- Thus, the in-plane strain components are: $\varepsilon_{\nu} = \varepsilon_{\nu} = \varepsilon$ where

$$\varepsilon_x = (1/E)[\sigma - v\sigma] = \frac{\sigma}{[E/(1-v)]} = \frac{\sigma}{E'}$$

and where

Biaxial Modulus
$$\stackrel{\triangle}{=} E' = \frac{E}{1-\nu}$$



<u>EE 247B/ME 218</u>: Introduction to MEMS Design Lecture 9m2: Mechanics of Materials

Linear Thermal Expansion

- * As temperature increases, most solids expand in volume
- * Definition: linear thermal expansion coefficient

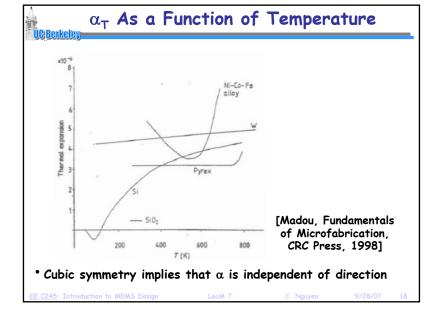
Linear thermal expansion coefficient
$$\triangleq \alpha_T = \frac{d\varepsilon_x}{dT}$$
 [Kelvin-1]

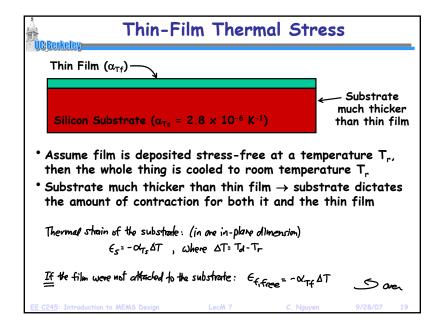
Remarks:

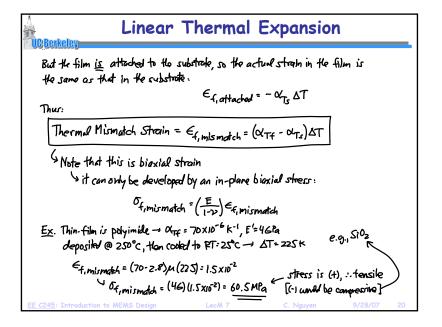
- * α_{T} values tend to be in the 10^{-6} to 10^{-7} range
- * Can capture the 10^{-6} by using dimensions of μ strain/K, where 10^{-6} K⁻¹ = 1 μ strain/K
- In 3D, get volume thermal expansion coefficient $\longrightarrow \frac{\Delta V}{V} = 3\alpha_T \Delta T$
- For moderate temperature excursions, α_T can be treated as a constant of the material, but in actuality, it is a function of temperature

EE C245: Introduction to MEMS Design

C. Nguyen 9/28/0

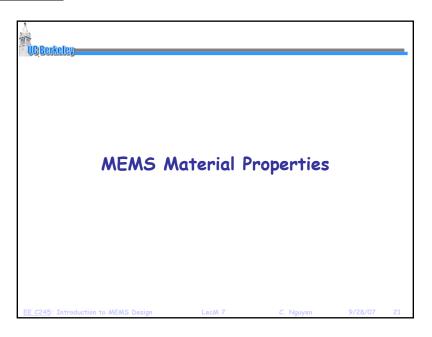


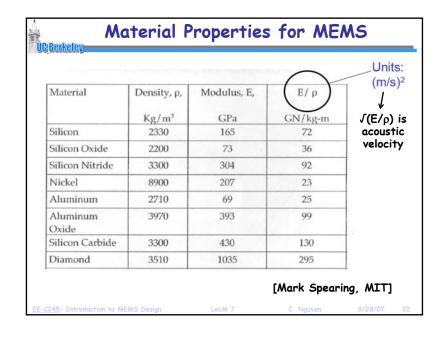


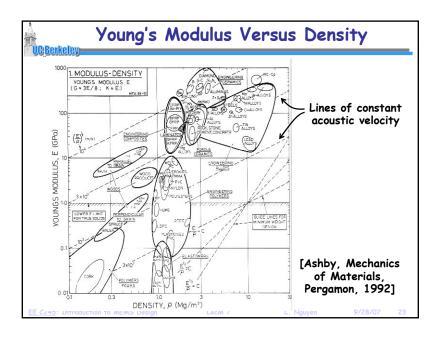


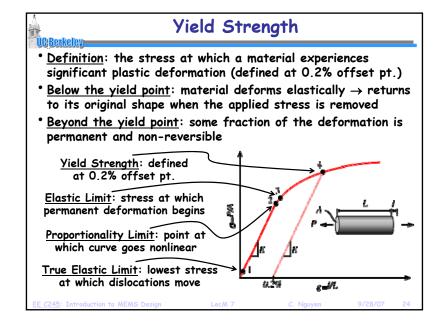
EE 247B/ME 218: Introduction to MEMS Design

Lecture 9m2: Mechanics of Materials



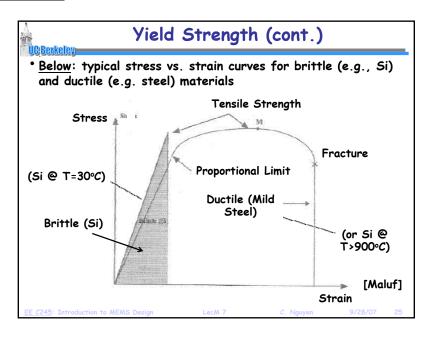


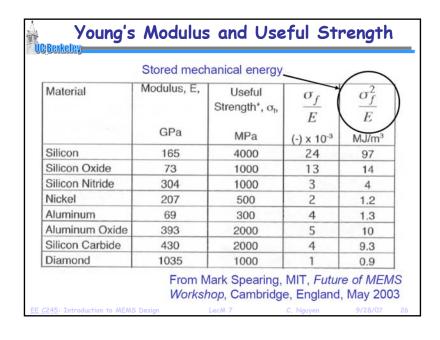


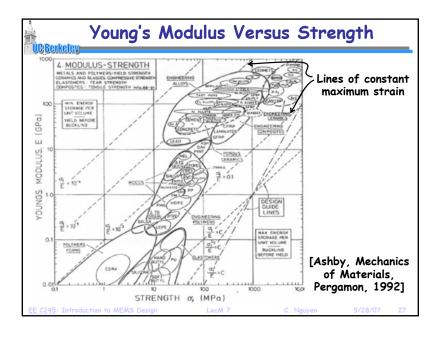


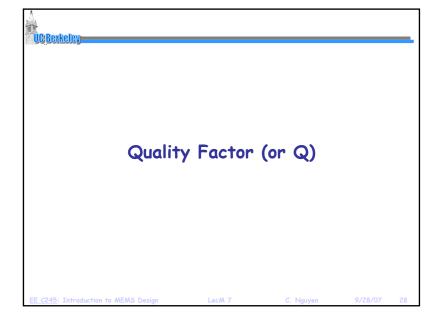
EE 247B/ME 218: Introduction to MEMS Design

Lecture 9m2: Mechanics of Materials









Clamped - Clamped Beam μ Resonator

Resonator Beam V_P V_P