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Introduction to MEMS Design
Spring 2015

Prof. Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

Lecture Module 9: Energy Methods

i Lecture Outline
JRH] T =

* Reading: Senturia, Chpt. 10

* Lecture Topics:
% Energy Methods
* Virtual Work
* Energy Formulations
* Tapered Beam Example
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Energy Methods

ﬁ? More General Geometries
“UgB

.
* Euler-Bernoulli beam theory works well for simple geometries
* But how can we handle more complicated ones?
* Example: tapered cantilever beam

* Objective: Find an expression for displacement as a function
of location x under a point load F applied at the tip of the
free end of a cantilever with tapered width W(x)

Top view of cantilever's Wix)
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Solution: Use Principle of Virtual Work

'B_E;@fﬁﬂl’ey—

* In an energy-conserving system (i.e., elastic materials), the
energy stored in a body due to the quasi-static (i.e., slow)

action of surface and body forces is equal to the work done
by these forces ..

* Implication: if we can formulate stored energy as a function
of the deformation of a mechanical object, then we can
determine how an object responds to a force by determining
the shape the object must take in order to minimize the
difference U between the stored energy and the work done
by the forces:

.-

"y

U = Stored Energy - Work Done

* Key idea: we don't have to reach U = O to produce a very
useful, approximate analytical result for load-deflection

& More Visual Description ...
I UCiBerkeley
Same problem aus befre: Toke a beamn fapp!y a ‘ﬁ:-/a r "
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U= Shred Erergy - Work Done-?o by s deformed shape
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o Fundamentals: Energy Density

TUG;Betkeley
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Strain energy densn'ry: [T/m3] W JQ 0—0 Yolar Hhlrmucd cork
% To find work done in straining materla\ Qb !

» wolue fetein @ pohon (59,2 hored orosy nt Cpacin
E':;i;;'m ﬂ' dff x-axis normal stress term
oty Cam jut ’to;,(ex)_,dak: Shres B Sain @ posdm\ (%43

jgé?s:u. (0= Een > w= r Ee de, —;
Gerovc
‘Wéb)j‘ 61)"(1 q%wﬁ Defini Ko

* Total strain energy [J]: er oF Gk
% Integrate over all strains (normal and shear)

W= m‘[% E (e_f +e, +e] )+ % G(y_; Y Y )}d?

‘= s

Bending Energy Density
I UCBerkeley
y’ Neutral Axis
. y(x) = transverse displacement
: = x of neutral axis
dx Yi_)

* First, find the bending energy dW,,,, in an infinitesimal

length dx: W= widft,
s -w‘d/fhr’—Eez( Ny’
bendd = X -he % 4%

{—é—- ‘,7:?; €" %b-xl = ql’i—:?i Ta
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Energy Due to Axial Load
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* Strain due to axial load S contributes an energy dW, ...i
in length dx, since lengthening of the different element dx

(to ds) results in a strain ¢, /g,'mmw Theorem
il - i ] L i 4847
o g d:bx -Jx _L(gi) Amﬂ\ﬁmm Evergy

[am’,,,‘u Sxdn= 3 (%)d/f‘l:; Waxu ’LS f %J

Shear Strain Energy
U [ ([ s

2L g3V
shear = S(EEZ) j ﬁz ':: dx
j'G’ Wh | dx

Shear Modulus

* See W.C. Albert, “Vibrating Quartz Crystal Beam
Accelerometer,” Proc. ISA Int. Instrumentation Symp., May
1982, pp. 33-44
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Basic Procedure:
U Guess the form of the beam deflection

loads

¥
u
L[]

order to minimize:

U= ZW ZFu

Applying the Principle of Virtual Work

% Vary the parameters in the beam deflection function in

Assumes
Sum strain ener-gles pom'r load

Dlsplacemen'r
at point load

% Find minima by simply setting derivatives to zero

* See Senturia, pg. 244, for a general expression with
distrubuted surface loads and body forces

under the applied

~UC;Berkeley

Top view of cantilevers W{x)

50% taper
x=L,

Y
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* Start by guessing the solution ———

i Example: Tapered Cantilever Beam

* Objective: Find an expression for displacement as a function
of location x under a point load F applied at the tip of the
free end of a cantilever with tapered width W(x)

will o Wix)=
l_)x minimize U
/N

% It should satisfy the boundary conditions
% The strain energy integrals shouldn't be too tedious
* This might not matter much these days, though, since
one could just use matlab or mathematica

e

Adjustable
parameters:

y(X) = Cyx% +Cy%°
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Strain Energy And Work By F
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W, .= f_ I I (Y{‘; de (Bending Energy)

W (x)h* '\ d’
12

W -
W (x)=W(l 25‘,']

I(x)=

5= 2¢, +6c;x

(Using our guess)

Tip Deflection

1 5 X ‘ 2 5
=£Ewh3{ (1—5)(2% +6cx)dy—Fle,L” +c,L.)

(4

i Find ¢, and c; That Minimize U
L s
* Minimize U — basically, find the c, and c; that brings U
closest to zero (which is what it would be if we had guessed
correctly)

* The ¢, and c; that minimize U are the ones for which the
partial derivatives of U with respective to them are zero:

L U
de, de,
* Proceed:
% First, evaluate the integral to get an expression for U:
5 } 1 1 ? z 3
U =EWh’ J 2y Ll +25 —F (czis; +€sﬁg')
| 16 3 "
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P Minimize U (cont)
1 UL ).
* Evaluate the derivatives and set to zero:

- 'ms W%

(,}U:i} e,—F L+ ¢, |L,

e, 3 4 /-
. 3

W _o= §%3c-3—5’ O+ EWn ¢, IL?

de, 8 3 -

* Solve the simultaneous equations to get ¢, and cj:

84\ FL. 24\ F
c,=| — 3 =" — 3
13 |EWh 13 |EWh

T
And the solution:

- 24F
D= 1%5%31 )L }'

* Solve for tip deflection and obtain the spring constant:

24F 3
W)= (13&%{ )L ke=F/y(L)= {if}?]

* Compare with previous solution for constant-width cantilever
beam (using Euler theory):

_( _4F 3 5 13% smaller than
(L) _( EWh? ]’Lﬂ " tapered-width case

ﬁﬁ The Virtual Work-Derived Solution
“UgB
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,H? Comparison With Finite Element Simulation
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Below: ANSYS finite element model with

L = 500 pm W, = 20 pm E = 170 GPa
h=2pm W, =10 pm

* Result: (from static
analysis)
Lk = 0.471 pN/m
* This matches the
result from energy
minimization to 3
significant figures

o Need a Better Approximation?
L e
* Add more terms to the polynomial

* Add other strain energy terms:
% Shear: more significant as the beam gets shorter
% Axial: more significant as deflections become larger

* Both of the above remedies make the math more complex,
so encourage the use of math software, such as
Mathematica, Matlab, or Maple

* Finite element analysis is really just energy minimization

* If this is the case, then why ever use energy minimization
analytically (i.e., by hand)?
% Analytical expressions, even approximate ones, give
insight into parameter dependencies that FEA cannot
% Can compare the importance of different terms
% Should use in tandem with FEA for design
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