
EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2016 

C. NGUYEN 

PROBLEM SET #1A 

Issued: Tuesday, Jan. 19, 2016 

Due: Wednesday, Feb. 3, 2016, at 8:00 a.m. in the EE C247B homework box near 125 Cory. 

This homework assignment is intended to give you some early practice playing with dimensions 

and exploring how scaling can greatly improve or degrade certain performance characteristics of 

mechanical systems. Don’t worry at this point if you do not understand fully some of the physical 

expressions used. They will be revisited later in the semester. This assignment just gives you a 

chance to play with them a bit. 

Use the material parameters given in Table PS1A.1 wherever needed. 

 

TYPE  
SILICON 

NITRIDE 
 

INTERCONNECT 

POLYSILICON 
 

STRUCTURAL 

POLYSILICON 
UNIT 

DENSITY 3200 2300 2300 kg/m3 

YOUNG’S 

MODULUS 
200 150 150 GPa 

POISSON 

RATIO 
0.280 0.226 0.226 − 

ELECTRICAL 

RESISTIVITY 
1021 10−5 10−5 Ω. m 

THERMAL 

CONDUCTIVITY 
43 30 30 W/m. K 

SPECIFIC 

HEAT 
1.10 0.77 0.77 J/g. K 

MICRO-OVEN 

THICKNESS 
1.0 0.4 2.0 μm 

Table PS1A.1 

 

1. Suppose you are asked to design a polysilicon beam resonator, such as discussed in lecture and 

given below in Fig. PS1A.1. 

(a) The general equation for the deflection of this beam is given by the Euler-Bernoulli 

equation as follows 
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𝜕4𝑣(𝑦)

𝜕𝑦4
= 𝜔2

𝜌𝑆

𝐸𝐼
𝑣(𝑦)  

 

(1) 

where 𝑣 is the displacement function, 𝑦 is the planar spatial coordinate as shown in Fig. 

PS1A.1(b), 𝜔 is the resonance frequency in radians, 𝑆 is the cross-section area, and 𝐼 is the 

moment of inertia of the beam cross-section. Derive the general solution of the Euler-

Bernoulli equation, i.e. find the most general solution of 𝑣(𝑦). (Note that your answer will 

have four constants.) 

    

Fig. PS1A.1 

(b) The beam given in Fig. PS1A.1 is a generic one with no end conditions specified. However, 

resonance frequency and mode shape determination requires the knowledge of end 

conditions. Some common end conditions are listed in Table PS1A.2 below. 

 

TYPE 1ST BOUNDARY CONDITION 2ND BOUNDARY CONDITION 

FIXED 𝑣 = 0 

No deflection 

at the 

boundary 

𝜕𝑣

𝜕𝑦
= 0 

Horizontal at 

the boundary 

FREE 
𝜕2𝑣

𝜕𝑦2
= 0 

No bending 

moment 

𝜕3𝑣

𝜕𝑦3
= 0 

No shearing 

force 

SIMPLY 

SUPPORTED 
𝑣 = 0 

No deflection 

at the 

boundary 

𝜕2𝑣

𝜕𝑦2
= 0 

No bending 

moment 

Table PS1A.2 
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Find an expression for the resonance frequencies of the first three modes for the beam 

resonators with different end conditions given in Fig. PS1A.2 below. Don’t worry at this 

point on how a free-free beam is actually fixed to the substrate. 

 

Fig. PS1A.2 

(c) Find the first mode shape of cantilever, fixed-fixed beam, and free-free beam resonators 

and plot them on the same graph. Do not forget to normalize the mode shapes. 

Normalization in this context means setting the peak amplitude to unity. 

(d) Assuming 𝐻 = 2µm and 𝑊 = 10µm design a free-free beam resonator at (i) 10MHz, (ii) 

100MHz, and (iii) 1GHz. 

(e) Assuming 𝐻 = 2µm and 𝑊 = 10µm, plot 𝑓0 vs. 𝐿/𝐻 for a free-free beam with 𝐿/𝐻 going 

from 1 to 40.  Make sure the step size is small enough to obtain a smooth curve. 

(f) Euler-Bernoulli theory is actually not very accurate when the length of the beam begins to 

approach its thickness, mainly because it ignores shear displacements and rotary inertias. 

(These are things that you will learn more about later in the course.) For cases where 

thickness approaches length, the more complicated Timoshenko design procedure should 

be used to model a beam’s resonance characteristics. For a free-free beam, Timoshenko’s 

design procedure uses the following equation: 

𝑡𝑎𝑛
𝛽

2
+

𝛼

𝛽
(

𝛼2 + 𝑔2

𝛽2 − 𝑔2
) 𝑡𝑎𝑛ℎ

𝛼

2
= 0 

 

(2) 

where 

𝑔2 = 𝜔2𝐿2 (
𝜌

𝐸
) 

 

(3) 

and 
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𝛽2

𝛼2
} =

𝑔2

2
[± (1 +

𝐸

𝜅𝐺
) + √(1 −

𝐸

𝜅𝐺
)

2

+
4𝐿2𝐻𝑊

𝑔2𝐼
 ] 

 

(4) 

where 𝜅 is the shear-deflection coefficient (for a rectangular cross-section, 𝜅 is 2/3) and 𝐺 

is the shear modulus of elasticity given as  

𝐺 =
𝐸

2(1 + 𝜈)
 

 

(5) 

Use Timoshenko’s formulas above to determine the actual frequencies of the beams 

designed in part (d) above and determine the percent mismatch. Plot 𝑓0 vs. 𝐿/𝐻 curves 

obtained in part (e) with Euler-Bernoulli and Timoshenko theories on the same graph. 

Determine the critical 𝐿/𝐻 aspect ratio after which the mismatch between the two theories 

is less than 5%. The percent mismatch is defined as follows 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ =  100 (1 −
𝑓𝑇𝑖𝑚𝑜𝑠ℎ𝑒𝑛𝑘𝑜

𝑓𝐸𝑢𝑙𝑒𝑟−𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖
) 

 

(6) 

where 𝑓𝐸𝑢𝑙𝑒𝑟−𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖  is the resonance frequency obtained with Euler-Bernoulli theory 

and  𝑓𝑇𝑖𝑚𝑜𝑠ℎ𝑒𝑛𝑘𝑜 is the resonance frequency obtained with Timoshenko theory. 

 

Fig. PS1A.3 

(g) Assume that a 150mm (6″) diameter wafer has a useful area of 100 mm × 100 mm over 

which resonators can be fabricated as shown in Fig. PS1A.3. (Here, the edges of the wafer 

are for handling, so do not yield working devices.) A dicing saw is used to cut the wafer 

into individual dies and the width of each cut is 50μm. Each sensor requires a square unit 

cell with a minimum area of 9𝐿2. The cost per sensor is given by 
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𝐶(𝑛, 𝑑) =
$3000 + $1 𝑥 𝑛

𝑑
+ $2 

 

(7) 

where 𝑛 is the number of cuts through the wafer and 𝑑 is the number of dies. Here, the 

fixed $2 cost per sensor is due to post processing, packaging, and testing costs. Assuming 

that the minimum die size that can be reliably handled is 1mm × 1mm. What is the lowest 

achievable fabrication cost per sensor (to the nearest cent) and what is the corresponding 

maximum resonator length (to the nearest ten microns)? [Hint: it would be helpful to 

define 𝑑(𝑛) and to find 𝑛.] 

 


