Lecture 17: Resonance Frequency

- Announcements:
 - Module 9 on Energy Methods online
 - Module 10 on Resonance Frequency online soon
 - Midterm Exam, Thursday, March 17, 5:10-7 p.m. in 3107 Etcheverry
 - Passed out old midterm solutions and went through midterm info sheet last time - the info sheet is in the Quizzes/Midterm/Final link
 - Graded homework in tray outside my office

- Reading: Senturia, Chpt. 10
- Lecture Topics:
 - Energy Methods
 - Virtual Work
 - Energy Formulations
 - Tapered Beam Example
 - Estimating Resonance Frequency

- Reading: Senturia, Chpt. 10: §10.5, Chpt. 19
- Lecture Topics:
 - Estimating Resonance Frequency
 - Lumped Mass-Spring Approximation
 - ADXL-50 Resonance Frequency
 - Distributed Mass & Stiffness
 - Folded-Beam Resonator
 - Resonance Frequency Via Differential Equations

- Last Time:
 - Started energy-based solutions to bending problems

More General Geometry

- Euler-Bernoulli beam theory works well for simple geometries
- But how can we handle more complicated ones?
- Example: tapered cantilever beam

Objective: Find an expression for displacement as a function of location x under a point load F applied at the tip of the free end of a cantilever with tapered width $W(x)$

$$W(x) = W(1 - \frac{x}{2L_e})$$

Same problem as before: Take a beam, apply force.

1. Strain energy (tension & compression)
 - So the beam has received an input of energy, which it stores as stored energy
 - Magnitude determined by shape.
Then:
\[U: \text{Stored Energy} - \text{Work Done} \to 0 \]

when we choose the right shape
This is how we get the beam's response to \(F \).

Fundamentals of Energy Density

General Definition of Work:

\[W(q) = \int_0^q e(q) \, dq \quad q = \text{displacement} \]

\[e = \text{elastic} \]

\[\text{force:} \quad W(q) = \int_0^q \frac{d}{dq} \, dq \]

Strain Energy Density: reduced strain @ position \((x, y, z)\)

\[\omega = \int_0^x \varepsilon \, dx \]

\[\varepsilon = \frac{\sigma}{E} \]

\[\left[\sigma_x, \varepsilon_x \right] \]

\[\omega = \int_0^x \epsilon_x \, dx = \frac{1}{2} \varepsilon_x^2 \]

Total Strain Energy \((U) \):

\[U = \int \left\{ \frac{1}{2} E (\varepsilon_x^2 + \varepsilon_y^2 + \varepsilon_z^2) \right\} \, dV \]

Bending Energy Density

\[\text{Neutral Axis} \]

\[y(x) = \text{transverse displacement of neutral axis} \]

First, find the bending energy \(dW_{\text{bend}} \) in an
infinitesimal length \(dx \):

\[dW_{\text{bend}} = W dx \left[\frac{1}{2} \frac{1}{2} E \epsilon_x^2 (y') dy' \right] \]

\[\left[\frac{1}{R} = \frac{d^2 y}{dx^2}, \epsilon_x = \frac{y''}{R} \right] \rightarrow \epsilon_x(y') = y' \frac{d^2 y}{dx^2} \]

\[dW_{\text{bend}} = \frac{1}{2} \frac{1}{2} E \left[y' \frac{d^2 y}{dx^2} \right]^2 dy' \]

\[= \frac{E}{2} \left(\frac{Wh^3}{12} \right) \frac{d^2 y}{dx^2} dx \]

\[= \frac{EI_x}{2} \int \frac{d^2 y}{dx^2}^2 \, dx \]
Energy Due to Axial Load

\[ds = \sqrt{(dx)^2 + (dy)^2} \]

\[\epsilon_x = \frac{ds - dx}{dx} \approx \frac{1}{2} \left(\frac{dy}{dx} \right)^2 \]

\[W_{axial} = \frac{1}{2} \int_0^L \left(\frac{dy}{dx} \right)^2 dx \]

\[\text{Axial Strain Energy} \]

- Look at shear strain energy in your module.

- Go to Module 9, pg. 10, and look at shear strain energy.

- Then, finish off Module 9

Estimating Resonance Frequency

Potential Energy

\[U(t) = \frac{1}{2} k x(t)^2 = \frac{1}{2} k x_0^2 \cos^2 \omega t \]

Kinetic Energy

\[K(t) = \frac{1}{2} M \dot{x}^2(t) = \frac{1}{2} M x_0^2 \omega^2 \sin^2 \omega t \]

Remarks:

1. Energy must be conserved.
The proof mass of the ADXL-50 is many times larger than the effective mass of its suspension beams. Can ignore the mass of the suspension beams (which greatly simplifies the analysis).

- Suspension Beam: $L = 260 \, \mu m$, $h = 2.3 \, \mu m$, $W = 2 \, \mu m$

In fabrication, purposely introduce a tensile stress on the beams:

a fairly large one \rightarrow okay for an air bag accelerometer.

$\omega_0 = \sqrt{\frac{k}{m}}$

\Rightarrow good to problem when mass stiffness can be segregated; i.e., when they are distinct.
Bending Contribution

\[k_b = \frac{1}{L} \left(\frac{1}{L} \right)^3 = \frac{L^3}{E h w^3} \]

Stretches Contribution

\[k_s = \frac{1}{2} \frac{L}{h} \]

\[F_y = \sigma s \theta = \sigma s \left(\frac{L}{L} \right) = \sigma s \]

\[\text{Maximum displacement function (i.e., mode shape function)} \]
\[\hat{y}(x) \]

To get the total spring constant

\[k = 4 (k_b + k_s) = 4 (0.24 + 0.88) = 4.5 \, \text{N/m} \]

Now, get resonance freq:

\[f_0 = \frac{1}{2 \pi} \sqrt{\frac{k}{m}} = \frac{1}{2 \pi} \sqrt{\frac{4.5 \, \text{N/m}}{1.2 \times 10^{-4} \, \text{kg}}} = 26.5 \, \text{kHz} \]

ADXL50 Data Sheet: \(f_0 = 24 \, \text{kHz} \)

\[\text{Capacitive transducer} \]
\[\text{Electrical stiffness} \]

\[\text{Find the resonance frequency when mass + stiffness are distributed} \]

\[y(x, t) = \hat{y}(x) \cos(\omega t) \]

\[\text{Maximum displacement function} \]
\[\hat{y}(x) \]

\[\text{Velocity topographical mapping} \]

\[y(x, t) = 0 \]