Lecture 18: Resonance Frequency II

- Announcements:
 - Module 10 on Resonance Frequency online
 - Module 11 on Equivalent Circuits online
 - Graded midterms coming back today with solutions
 - Also, will show Z-scores
 - HW#5 online soon
 - Project described today (info online)

- Reading: Senturia, Chpt. 10: §10.5, Chpt. 19

- Lecture Topics:
 - Estimating Resonance Frequency
 - Lumped Mass-Spring Approximation
 - ADXL-50 Resonance Frequency
 - Distributed Mass & Stiffness
 - Folded-Beam Resonator
 - Resonance Frequency Via Differential Equations

- Reading: Senturia, Chpt. 5

- Lecture Topics:
 - Lumped Mechanical Equivalent Circuits
 - Electromechanical Analogies

- Last Time:
 - Determined resonance frequency for a lumped mass-spring system
 - Now, look at a distributed system

Find the Resonance Frequency When Mass & Stiffness Are Distributed

* Vibrating structure displacement function:
 \[y'(x, t) = \hat{y}(x) \cos(\omega t) \]

Maximum displacement function (i.e., mode shape function)

* Procedure for determining resonance frequency:
 - Use the static displacement of the structure as a trial function and find the strain energy \(W_{\text{max}} \) at the point of maximum displacement (e.g., when \(t=0, \pi/\omega, \ldots \))
 - Determine the maximum kinetic energy when the beam is at zero displacement (e.g., when it experiences its maximum velocity)
 - Equate energies and solve for frequency

Get Maximum Kinetic Energy

\[
\text{velocity: } N(x,t) = \frac{\partial y(x,t)}{\partial t} = -\omega \hat{y}(x) \sin(\omega t)
\]

\[
N(x, \frac{2\pi n + \pi}{2\omega}) = -\omega \hat{y}(x)
\]

\[
t = \frac{n\pi}{\omega}, \frac{3\pi}{2\omega}, \ldots
\]

Velocity topographical mapping

\(\text{Vibraing} = 0\), all the energy in the structure is kinetic. \(N=0, K = \text{max}\)
Derive an expression for the resonance frequency of the above structure:

\[\omega = \sqrt{\frac{W_{\text{max}}}{\int_0^L \rho \bar{w} h \left[\eta(x) \right]^2 \, dx}} \]

- \(\omega \): radian resonant frequency
- \(W_{\text{max}} \): maximum potential energy
- \(\rho \): density of the structural material
- \(W \): beam width
- \(h \): thickness
- \(\eta(x) \): resonance mode shape

To get frequency:

\[\omega_{\text{max}} = \frac{W_{\text{max}}}{\int_0^L \rho \bar{w} h \left[\eta(x) \right]^2 \, dx} \]

- \(\omega_{\text{max}} \): maximum resonant frequency

Use the Rayleigh–Ritz Method: (energy method)

Derive an expression for the resonance frequency of the above structure.

\[W_{\text{max}} = \int_0^L \rho \bar{w} h \left[\eta(x) \right]^2 \, dx \]

Find the kinetic energy → one place at a time:

\[W_{\text{max}} = K_s + K_t + K_b \]

- \(K_s \): shuttle truss beams
- \(K_t \): truss beams
\[k_{max} = \frac{1}{2} N_e^2 M_e + \frac{1}{2} N_b^2 M_b + \frac{1}{2} \int N_b' dM_b \]

Velocity of Shuttle:
\[N_e = \frac{\omega_0 X_0}{\omega} \]

\(\omega \) = resonant frequency
\(X_0 \) = max. displacement

\[K_s = \frac{1}{2} N_e^2 M_e = \frac{1}{2} \omega_0^2 X_0^2 M_e \]

Velocity of Truss:
\[N_b = \frac{1}{2} N_b^2 = \frac{1}{2} \omega_0 X_0 \]

\[K_b = \frac{1}{2} \left(\frac{1}{2} \omega_0 X_0 \right)^2 M_b = \frac{1}{8} \omega_0^2 X_0^2 \frac{M_b}{\pi} \]

mass of both truss combined

Velocity of the Beam Segments:

\[\frac{X_0}{2} \]

\[\frac{X_0}{2} \]

Assume the mode shape is the same as the static displacement mode shape.

guided

fixed