Parallel-Plate Capacitive Nonlinearity

- Example: clamped-clamped laterally driven beam with balanced electrodes
- Nomenclature:
 - V_1 or v_1
 - V_d
 - v_d
 - V_{a} or v_{a}
 - V_{c}
 - V_{p}

Voltage-Controllable Center Frequency

- Quadrature force \rightarrow voltage-controllable electrical stiffness:
 - $k_e = \frac{\varepsilon_0 A_o V_p^2}{d^3}$

Microresonator Thermal Stability

- Thermal stability of poly-Si micromechanical resonator is 10X worse than the worst case of AT-cut quartz crystal

Geometric-Stress Compensation

- Use a temperature dependent mechanical stiffness to null frequency shifts due to Young's modulus thermal dep.

Problems:
- σ_0 stress relaxation
- σ_0 compromised design flexibility
Voltage-Controllable Center Frequency

Excellent Temperature Stability

Can One Cancel k_e w/ Two Electrodes?

- What if we don’t like the dependence of frequency on V_p?
- Can we cancel k_e via a differential input electrode configuration?

If we do a similar analysis for F_{d2} at Electrode 2:

$F_{d2}\approx -V_{p2}\frac{C_{\perp}}{d_2}x\cos{\omega_0t}$

$+V_{p2}\frac{C_{\perp}}{d_2}x\sin{\omega_0t}$

Add to the quadrature term → k_e’s add, no matter the electrode configuration!
Problems With Parallel-Plate C Drive

* Nonlinear voltage-to-force transfer function
 % Resonance frequency becomes dependent on parameters (e.g., bias voltage V_p)
 % Output current will also take on nonlinear characteristics as amplitude grows (i.e., as x approaches d_o)
 % Noise can alias due to nonlinearity

* Range of motion is small
 % For larger motion, need larger gap ... but larger gap weakens the electrostatic force
 % Large motion is often needed (e.g., by gyroscopes, vibromotors, optical MEMS)

![Diagram of parallel-plate capacitor with forces and motion diagram]