

Problems With Parallel-Plate C Drive

- Nonlinear voltage-to-force transfer function
$\stackrel{\leftrightarrow}{\mapsto}$ Resonance frequency becomes dependent on parameters (e.g., bias voltage V_{p})
$\stackrel{\wedge}{ }{ }^{\wedge}$ Output current will also take on nonlinear characteristics as amplitude grows (i.e., as \times approaches d_{0})
$\left.{ }_{4}\right)$ Noise can alias due to nonlinearity
- Range of motion is small
${ }^{4}$ For larger motion, need larger gap ... but larger gap weakens the electrostatic force
${ }^{4}$ Large motion is often needed (e.g., by gyroscopes, vibromotors, optical MEMS)

Lecture 22m1: Capacitive Transducers

EE 247B/ME 218: Introduction to MEMS Design

U0	
$\begin{aligned} & \text { Gap }=d_{\text {d }}=1 \mu \mathrm{~m} \\ & \text { Thicknss }=h=2 \mu \mathrm{~mm}\end{aligned} \quad F_{e, y}=\frac{1}{2} \frac{\varepsilon_{o} h L_{d}}{d_{o}^{2}} V_{2}^{2}$	
Thickness $=h=2 \mu \mathrm{~m}$ Finger Length $=L_{f}=100 \mu \mathrm{~m}$ Finger Overlap $=L_{d}=75 \mu \mathrm{~m}$ $\frac{1}{2} \frac{\varepsilon_{o} h L_{d}}{d^{2}} V^{2}$	
	$\frac{1}{2} \frac{\varepsilon_{0} h}{d} V_{s}^{2}$ do linearity

