Lecture 22: Comb Drive & Equivalent Circuits II

- **Announcements:**
 - Module 13 on Equivalent Circuits II online
 - HW#6 online soon
 - Project slide #2 due Friday, April 15

- **Reading:** Senturia, Chpt. 5, Chpt. 6
- **Lecture Topics:**
 - Energy Conserving Transducers
 - Charge Control
 - Voltage Control
 - Parallel-Plate Capacitive Transducers
 - Linearizing Capacitive Actuators
 - Electrical Stiffness
 - Electrostatic Comb-Drive
 - 1st Order Analysis
 - 2nd Order Analysis

- **Reading:** Senturia, Chpt. 6, Chpt. 14
- **Lecture Topics:**
 - Input Modeling
 - Input Equivalent Ckt.
 - Current Modeling
 - Output Current Into Ground
 - Input Current
 - Complete Electrical-Port Equiv. Ckt.
 - Impedance & Transfer Functions

- **Last Time:** Going through Module 12 slides 26-35

Input Electrical Equivalent Ckt.

For now, address the motional behavior, not the parasitic...
In phasor form:
\[I_2(jw) = -jw \cdot \frac{\partial C_2}{\partial x} \cdot x \]

By motional current:
\[I_2(jw) = -jw V_p \frac{\partial C_2}{\partial x} \cdot x \]

Describing Matrix:
\[
\begin{bmatrix}
 e_2 \\
 f_2
\end{bmatrix} =
\begin{bmatrix}
 \eta & 0 \\
 0 & -1/\eta
\end{bmatrix}
\begin{bmatrix}
 e_1 \\
 f_1
\end{bmatrix}
\]
\[I_i(j\omega) = \frac{j\omega C_1 V_i + j\omega C_1 \frac{\partial C_1}{\partial x} x - j\omega V_p \frac{\partial C_1}{\partial x} x}{\kappa} \]

Due to mass motion

Feedthrough Current

Motional Current