

EEC247B/MEC218: Introduction to MEMS Design

Noise

b) To get $\overline{i_{eq}^2}$ for a 2-port:

Noisy Network

1) Open input, find $\overline{v_{0I}^2}$ (or $\overline{i_{0I}^2}$)

2) Open input for eq. circuit, find $\overline{v_{0I}^2}$ (or $\overline{i_{0I}^2}$)

3) Set $\overline{v_{0I}^2} = \overline{v_{0II}^2} (\overline{i_{eq}^2}) \rightarrow$ solve for $\overline{i_{eq}^2}$ (or $\overline{i_{0I}^2} = \overline{i_{0II}^2} (\overline{i_{eq}^2})$)

• Once the equivalent input-referred noise generators are found, noise calculations become straightforward as long as

the noise generators can be treated as uncorrelated

