Lecture 3: Benefits of Scaling II

Announcements:

- As announced last time, I am on travel right now.
- This is a pre-recorded video.
- The notes from last time are online, as well as the video - both in the Lecture link table.
- Modules 1 & 2 are online (also, in the Lecture link table).
- HW#1A (due Wednesday, Feb. 3) online at the Homework link.
- HW#1B (due Wednesday, Feb. 10) also online.
- Get your computer accounts by following the instructions at the end of the Course Info Sheet (the new one recently uploaded).

Today:

- Reading: Senturia, Chapter 1.
- Lecture Topics:
 - Benefits of Miniaturization
 - Examples:
 - GHz micromechanical resonators
 - Chip-scale atomic clock
 - Micro gas chromatograph

Last Time:

- Going through Module 2, looking at a clamped-clamped beam resonator example.

Equation for Resonance Freq:

\[f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = 1.03 \sqrt{\frac{E}{\rho L^2}} \]

where:

- \(E \) = Young's modulus of elasticity [GPa]
- \(\rho \) = density [kg/m^3]
- \(h \) = thickness [m]
- \(L \) = length [m]

Example: \(L = 49\mu m, h = 2\mu m \)

\[f_0 = (1.03) \sqrt{\frac{150}{2300}} \frac{2\mu}{(4\mu)^2} = f_0 = 10.4MHz \]

Why isn't this 0.5MHz?

(as measured)
Scalings

1. Scale all dimensions equally by a factor \(s \)
 \[f_0 \sim \frac{s}{s^2} = \frac{1}{s} \]

2. If scale \(L \) only: \(f_0 = \frac{1}{s^2} \) — even small increase in freq.
 (...) but problem...

Example:

\(L = 4 \, \mu m \) — \(f_0 = (1.03)(8076) \frac{2\pi}{(4\mu m)^2} = 1.04 \, GHz \)

Remove:

1. Eq. (i) not accurate when \(L \approx W \approx h \)
2. When \(L \approx h \), can't cut more than \(10 \times h \)

 May anchor less problems

Remedy:

\(Q = \frac{\text{energy per cycle}}{\text{energy lost per cycle}} \)

Solution:

- We homodimensional!

 \(\xi \) small

- May little anchor loss

Problem: power handle to sustain flow

Solution: use more number in array!

Both sides: use other geometry

Free-Free Beam: nodal points

Ride view

No vertical motion — low loss from pumping into substrate

Top view
Even Better Approach

Disk

\[f_0 = 580 \text{ MHz} \]
\[Q = 100,000 \]

Circuit Design
Transistor Circuit

\[G \]

\[\frac{V_{DS}}{V_{GS}} \]

\[N_{S} \]

\[G \]

\[V_{DS} \]

\[V_{GS} \]

\[V_{IN} \]
• Now go through Module 2, slides 9-30
Review Electrical Resistance First

(Then address the thermal R analogy)

\[R_e = \text{electrical resistance} = \frac{l}{\sigma A} \]

\[C_e = \text{capacitance} = \frac{\varepsilon W L}{d} \]

\[\text{cross-sectional area} = A = hw \]