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& Lecture Outline
T 1B 1 .

* Reading: Senturia, Chpt. 10: §10.5, Chpt. 19

* Lecture Topics:
% Estimating Resonance Frequency
% Lumped Mass-Spring Approximation
% ADXL-50 Resonance Frequency
% Distributed Mass & Stiffness
% Folded-Beam Resonator
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Estimating Resonance Frequency
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& Clamped-Clamped Beam pResonator
" UGBerkeley

Resonator Beam

Q ~10,000

/ ! Voltage- /
to- . .
Sinusoidal C:p : c‘:)i:?vee Sinusoidal

Excitation Forcing Function

Transducer
v, =V, cos|lw,t] — f; =F,cos|w,t]

* o % o, small amplitude

* o = 0,0 maximum amplitude = beam reaches its maximum

potential and kinetic energies
EE 245 Introdbction to MENS Design LedW 10 C. Nguyen 11/4/G3 4

Copyright @2016 Regents of the University of California 2



EE247B/ME218: Introduction to MEMS Design
Module 10: Resonance Frequency

5 Estimating Resonance Frequency
T 1) B .
* Assume simple harmonic motion:

= VY [ x(t) = x_cos(wt)
| p - .

* Potential Energy:

Wi = Sy = — kv Peos (o)

Z ' 2
* Kinetic Energy:

] .._ 1 5, .=
K (1) =—M#*(1) = = Mx, @ sin®(er)
Z Z
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w  Estimating Resonance Frequency (cont)

" UGBerkeley

* Energy must be conserved:
% Potential Energy + Kinetic Energy = Total Energy
% Must be true at every point on the mechanical structure

Occurs at peak Occurs when the beam moves
displacement through zero displacement
N

| 2 | 1 2 2
=—kx =K _=—Mwx

o max o

/7 max 2 2
Maximqm j T I \
Potential  gyicfness Maximum Radian

Energy Kinetic  Mass
Displacement  Energy Frequency

Amplitude
* Solving, we obtain for I
resonance frequency: 0=,—
M
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& Example: ADXL-50
" UGBerkeley
* The proof mass of the ADXL-50 is many times larger than
the effective mass of its suspension beams
% Can ignore the mass of the suspension beams (which
greatly simplifies the analysis)

* Suspension Beam: L = 260 um, h = 2.3 ym, W = 2 um

P R e e T Tethers with

I fized ends ] "
Applied
/ -\\ * Acceleration

[ ]
Voo
Fixed Capacitor Plates

Proof Mass

Sense Finger

Suspension Beam

S in Tension
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5 Lumped Spring-Mass Approximation

] e e
* Mass is dominated by the proof mass
% 60% of mass from sense fingers
% Mass = M = 162 ng (nano-grams)
* Suspension: four tensioned beams

% Include both bending and stretching terms [A.P. Pisano,
BSAC Inertial Sensor Short Courses, 1995-1998]

] Fl4
- B
Bending compliance k™
I Fl/4
Stretching compliance k; -
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A

ﬂ ADXL-50 Suspension Model
erkele_—.
* Bending contribution:

) (L/2) r
by =k +1/k)=2 . = =4.2um/
p =k ) {35(%-‘/12) EWn® o N
* Stretching contribution:
a0 . L
k, —L/S—Gr%—l.l4llm_/_ﬁf_\i ______________________________________ s
o —
S
F, = Ssing ~ S(x/L)= (£)x
* Total spring constant: add bending to stretching :s{_

(sine Heg are in pavallel)
k =40k, +k,) = 4(0.24+0.88) = 45N / tim
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A

i ADXL-50 Resonance Frequency

UCBerkeley

* Using a lumped mass-spring approximation:

448N/ m

———— =206.5kHz
162x10 " kg

* On the ADXL-50 Data Sheet: f, = 24 kHz

% Why the 10% difference?

% Well, it's approximate ... plus ...

% Above analysis does not include the frequency-pulling
effect of the DC bias voltage across the plate sense
fingers and stationary sense fingers .. something we'll
cover later on ...
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& Distributed Mechanical Structures
] [

* Vibrating structure displacement function:

Y AN .

/{ NAC S RN AT YAV S IQ LY

/7

|

g

T Sy,
vl

V.

Maximum displacement function ~ y(x)

(i.e., mode shape function)
Seen when velocity y(x,t) = O

* Procedure for determining resonance frequency:

% Use the static displacement of the structure as a trial
function and find the strain energy ‘W, ., at the point of
maximum displacement (e.g., when t=0, n/e, ..)

% Determine the maximum kinetic energy when the beam is
at zero displacement (e.g., when it experiences its
maximum velocity)

% Equate energies and solve for frequency
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o Maximum Kinetic Energy
T 1B 1 .
* Displacement: y(x,?) = y(x)cos|wt]

* Velocity: v(x,t)= % = —ap(x)sin[wt]

* At times t = n/(2w0), 37n/(2w), ..
::i y(x9 t) = 0 ﬁ:
A L irrnr R

Y
Velocity topographical mapping

Y The displacement of the structure is y(x,t) = O
Y The velocity is maximum and all of the energy in the
structure is kinetic (since ‘W=0):

v(x,2n +1) 7/ 2w)) = ~ap(x)
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ﬁ Maximum Kinetic Energy (cont)

rkeleg_.

A'|‘ times t = n/(20), 37/(2w), ..

yeh70 &
“ RN | =
W Velocity: v(x,(2n+1)7/2w)) = —wp(x)
j% dK =+ dm. [v(x, 0]
2
—{dx}— dm = p(Wh- dx)
* Maximum kinetic energy:
L [
K. . = | pthw (x,1) =i . PWhey'° (x)dx
0 “ 0 <
= The Raleigh-Ritz Method

I UGBerkel

e

* Equate the maximum potential and maximum kinetic energies:

L
mq\ J.
0

* Rearranging yields for resonance frequency:

pPWha’ 3’ (x)dx =W,

max

b | —

o = resonance frequency
l W,..x = maximum potential
= / Ly p = density of the structural
Ag material
\ J‘ B PWhy~(x)dx W = beam width
0 h = beam thickness
y(x) = resonance mode shape
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T UG Berkeley

/ suspension

mass M,\2
Anchor b = thickness

EE €245: Introduction to MEMS Design LecM 10

Example: Folded-Beam Resonator

Folded-beam g * Derive an expression for the
K x resonance frequency of the
folded-beam structure at left.

Use Rayleigh-Rife mekhrod.
KE mey = PE mox,
. Shuttle w/ Kinettc E‘nevvy-
mass M, KEmo, FE + t& + KEB
dm»i'ﬂe ‘I'N.U beam

- 2
T UM L 1 L (an,

Folding £ bof
mass o C—\)—/
truss w/ ,}V{‘m Must ink grate sine He

beam \lelaqf'y is a functin,

of location !

C. Nguyen 11/4/08

15

T UG Berkeley

suspension

mass M,

Folding
truss w/ 2
mass M,\2 ()=

Anchor | = thickness

EE €245: Introduction to MEMS Design LecM 10

. keg= o

Get Kinetic Energies

Folded-beam 1’ Velocty of the shuble: Nz (o Xo
¥ Resoane Freg. Mmlmu{‘ bisplcewedt

w,fw

\/docﬁy of e truss: _\-U' 'LU»X'

o Shuttle w/ KEt' 2 é“”z’\"t(-

Veloaty of Ho beam segmedts:
= assume o mrle -S‘hnre (s He Sawe ar
0 stutic JL? locewondt Shape

= For Segh\en’r AB:
(31_‘} —2,?3) 0<ysL ()

‘{? Efe

C. Nguyen 11/4/08
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Folded-Beam Suspension

T UG Berkeley
. Folding Truss

Suspension

Comb-Driven Folded Beam Actuator (
(A
&('al v (3L4}2—2¢?3) Oé‘a.‘ L

(oMo Xmsd):0 v
o ek
_2"@"-0 M,.Lo\: q‘"k!. x L T2
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& Get Kinetic Energies (cont)
I UGBetkeley

Frl®
Folded-beam 4" Py : i) 2 _‘%’Ee
% x S‘uLJ'HMna o (l):

suspenswn
/ e —— Reay: 2 [3(8)-2(4)°]

. L tshich yl'er @ VelocH'\!
_——L V() ,[AB] [Z 2( 4)
- Shuttle w/

H“ﬂﬂi"ﬁ b fle c;soru.rlé.'ﬁl KEb:

KEgy ™ : Xlﬁfg(ﬁz-z(%ﬂ?"m

mass M,

» . Sebe mas — 7 2 FocL
b i 32
|| | Folding of beam = X_"_“L_tﬂ’]j [3(?’)2-2(%) J
1 truss w/  (AB) JL °
mass M,\2 K
Anchor K - thickness F\’A!ﬂ X°w' M(AB]
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T UGBerkeley
Folded-beam

T ¢
- Shuttle w/
mass M,

Folding
truss w/
mass M\2

h = thickness

EE €245: Introduction to MEMS Design

Anchor

Get Kinetic Energies (cont)

LecM 10

For segment CD:

suspension e 'tco] . Xo[" % G?_)z_,_ (?)3 m
Thes:
KE(zo * XMMWS  ORG) ]

w [CD]

L-{Hb-‘l'oummaf#do"éenm.

" Moy M) = # M

Thus: .
ke TKEpg) +YFicp) - g—sxi‘“’:”’b

and
Kt XC0Z (35 $Ms SM,]

11/4/08

C. Nguyen

19

2
" UGBerkeley

Folded-beam

Get Potential Energy & Frequency

PEpagx if .r;mPly e wort dore Fo achieve
e ke

suspension maximum deflecHon:
‘ - f meZ*XD
' | L Thur, uﬁnj ga’ey\-ﬂ‘l'%‘
KEmwg PEM“ ékc
2 -———L ” "+ .
— Shuttle w/ X/ °[ s iFM( ] Lk’%
mass M, /_\
I( :k
AR L:" <
€4
Folding where Meg® Hst My + 35 My
truss w/
mass M,\2 ( Resmane Fraquoncy of 4 )
Anchor 1 - thickness Foded -8eam .S'wpqn&a/ Shuthe
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,/“,
LI
RUGEEGEET e

Brute Force Methods for Resonance
Frequency Determination
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ﬁT] Basic Concept: Scaling Guitar Strings

UCBerkeley

Guitar String uMechanical Resonator

Metallized
ol Electrode
o
2
a
£
<
o
5 Polysilicon
+ > Clamped-Clamped
110 Hz  Freq. Beam
Vibrating “A” [Bannon 1996] Performance:
String (110 Hz) I . . L,=40.8um
f,=8.5MHz m,_~ 1013 kg
Stiffness |2 °[ Q,,c =8,000 W,=8um, h=2pm
S lsof Qu~50 d=1000A, V=5V
Freq. Equation: D £ Press.=70mTorr
J-_q_‘/- Eas |
1 [k §
f - r =20 | 4
Y. 2\ m, L |
Freq. ) yr yr E = = =
EE C245: Introduction to ME?AS Design Mass LS o 849Freqi2?1cy [’3"5_‘12] e 22
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=

Berkeley

Fixed-Fixed Beam Resonator

e

Ancho

A;:hor

| @ =300 at 70MHz |

Free-Free Beam Resonator

Free-Free Beam

Q= 15,000 at 92MHz |

EE C245: Introduction to MEMS Design

LecM 10

Elastic Wave
Radiation

o Anchor Losses

Problem: direct
anchoring to the
substrate = anchor
radiation into the
substrate = lower Q

b4

Solution: support at
motionless nodal points
= isolate resonator
from anchors = less
energy loss = higher Q

2
‘U

UCBerkeley

Support

Drive
Beams

Electrode Seam

13.1um

Ground Plane and
Sense Electrode

| Design/Performance:
L=13.1um, W,=6um
h=2m, d=1000A
Vp=28-76V, W =2.8um
f,~92.25MHz
Q-~7,450 @ 10mTorr
[Wang, Yu, Nguyen 1998]

EE €245: Introduction to MEMS Design

LecM 1u

1um

92 MHz Free-Free Beam pResonator

* Free-free beam pmechanical resonator with non-intrusive
supports = reduce anchor dissipation = higher Q
Flexural-Mode

Anchor

L L L L
92.24 92.26 92.28 92.30

C. NguyenF requency (VHz]

L
92.22

24

Copyright @2016 Regents of the University of California

CTN 3/28/16

12



EE247B/ME218: Introduction to MEMS Design CTN 3/28/16
Module 10: Resonance Frequency

&  Higher Order Modes for Higher Freq.

" UCBerkeley
2nd Mode Free-Free Beam 3rd Mode Free Free Beam

Transmission [dB]
o
Phase [degree]

1 -135

72 Q = 11’500 -180

101.31 101.34  101.37  101.40

Frequency [MHz]
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w  Flexural-Mode Beam Wave Equation
" UGBerkelgy

{ . Fu &~ i”"’"fb”ﬁd'im
|z 4 «——Transverse Displacement pAdx ;= ma

|
} W = width
g T : T M(FT ¥ MG
t-_—x_’—)”edx L h ‘ , 7/ oF
| infoma achms | 4. | F+——dx
Worronds 'J

|
) Free Body Dizgrom

* Derive the wave equation for transverse vibration: -
Dynamit Ei«f/rtnhm Covd ttion foc Forcas in Heo y-direction: s F%’“F%i*%?é; —M%:J;eb

Fo(Fs o= phdyd = 6 1) neglch #e Ty e
ond ¥o manard equilkrtom condtibon: ~Fout STdy =6 ()
Combivivg (1) ¢ 2): .
M, 91( Ju S Py . [EL\

b i 2[5

It ot g 2 att (pA)ast
2 3
v -14— T- a’;']j =W_'L
[ 5o B 5 B
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& Example: Free-Free Beam
T UGBerkeley
Auz
\\- - 0 _ - _ - Fe— W —>
i = ’:%::‘3- -—--":*:s, A Th
= : ~

* Determine the resonance frequency of the beam
* Specify the lumped parameter mechanical equivalent circuit

* Transform to a lumped parameter electrical equivalent
circuit
* Start with the flexural-mode beam equation:

0’u ( EI'\0%u
pA ) ox?
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or?

)

™ Free-Free Beam Frequency
] T
* Substitute u = u,ei®’ into the wave equation:

*u pA
? - (wz—ﬁ u 1)

* This is a 4™ order differential equation with solution:
u(x) = o cosh kx + Bsinh kx + €coskx + Dsinkx  (2)

T Giver o make shape during resmance vibafim.
* Boundary Conditions:

Atx =0 Atx="¢

iz_’i =( ﬂ =0 M = (0 (Bending moment)
ax? Ix?

a3u 8’u aM . !
a;.ao E-O e = () (Shearing force)
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A

i Free-Free Beam Frequency (cont)
T U B .
* Applying B.C.'s, get A=C and B=D, and
(cosh k¢— cos k¢)  (sinh k¢— sin k¢) || | _ 0 @3
(sinh k¢+ sin k¢) (cosh k¢— coskl) || B

* Setting the determinant = O yields

1
coskl= o hke
* Which has roots at
k(= 4730 kol = 7.853 ky= 10.296
= T vebuse of kil comespord

* Substituting (2) into (1) finally yields: o tia difeart maes of
vibeafion!

- 2
pA ( k. ¢) EI Free-Free Beam
k4 == i W f - 2—;{—2— pA | |Frequency Equation
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=  Higher Order Free-Free Beam Modes

" UGBerkeley
Nodal

Mode n Points kot 1

Fundamental ( f;) 1 2 4730 1.000

1st Harmonic 2. 3 7.853 2757

2nd Harmonic 3 4 10.996 5.404

3rd Harmonic 4 5 14.137 8.932

4th Harmonic 5 6 17.219 13.344 <— More than

10x increase

Fundamental Mode (n=1)

— < 1s* Harmonic (n=2)
(b)
XB .
; T ‘\_’//] 24 Harmonic (n=3)
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B Mode Shape Expression
L (Y
* The mode shape expression can be obtained by using the
fact that A=C and B=D into (2), yielding

u,-a[(%)(coshkx +eos{cx) + (sinh kx +sinkx)]

* Get the amplitude ratio by expanding (3) [the matrix] and
solving, which yields
;d_ - sin k¢ — sinh k¢
X coshkl{— coskl

* Then just substitute the roots for each mode to get the
expression for mode shape

Fundamental Mode (n=1)
[Substitute k= 4.730]
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