Lecture Outline

* Reading: Senturia, Chpt. 14
* Lecture Topics:
 - Detection Circuits
 - Velocity Sensing
 - Position Sensing
Velocity-to-Voltage Conversion

To convert velocity to a voltage, use a resistive load.
Velocity-to-Voltage Conversion

To convert velocity to a voltage, use a resistive load

![Diagram of velocity-to-voltage conversion](image1)

- **Brute force approach:**
 \[
 \frac{N_0}{N_1}(s) = \frac{R_0}{R_0 + \frac{1}{sC_x} + sL_x + R_0} = \frac{R_0}{R_0 + \frac{s(L_0 + R_0)}{L_x}} \times sC_x \]

Sine this structure has completely symmetrical I/O port:

- \(R_x \rightarrow Q_x \)
- \(R_x R_0 \rightarrow \frac{R_x R_0}{L_x} \rightarrow \frac{Q_x}{Q_x} \)

- \(Q_x \rightarrow \frac{R_x}{R_x + R_0} \)

Position-to-Voltage Conversion

To sense position (i.e., displacement), use a capacitive load

![Diagram of position-to-voltage conversion](image2)

- **Brute force approach:**
 \[
 \frac{N_0}{N_1}(s) = \frac{C_D}{sC_D + 1 + sL_x + \frac{1}{sC_D}} = \frac{C_D}{1 + \frac{sL_x}{C_D} + s^2 L_x C_D} \]

Again, I/O port symmetry:

- \(Q_x \rightarrow Q_x \)
- \(Q_x \rightarrow \frac{Q_x}{Q_x} \)
- \(Q_x \rightarrow \frac{Q_x}{Q_x + R_x} \)

- \(\frac{Q_x}{Q_x} \rightarrow \frac{Q_x}{Q_x + \frac{R_x}{C_D}} \)

- \(\frac{Q_x}{Q_x} \rightarrow \frac{Q_x}{Q_x + \frac{R_x}{C_D}} \)

Notes:

- Velocity-to-voltage conversion uses resistive loads.
- Position-to-voltage conversion uses capacitive loads.
- Both conversions involve symmetry in their I/O ports.

Copyright © 2016 Regents of the University of California
Position-to-Voltage Conversion

To sense position (i.e., displacement), use a capacitive load.

\[
V_o(s) = \frac{C_D}{1 + \frac{C_D}{C_L}} \frac{(s \omega)^2}{s^2 + (s \omega)^2 + (s \omega)^2}
\]

**To maximize gain \(\omega \to 1 \), need \(C_D \gg C_L \).

Note: Can use similar short-cut to the
R case.

1. Get DC response \(C \)'s dominate.
2. Then:

\[
\frac{V_o(s)}{V_i(s)} = \frac{1}{s} \mathcal{Z}(s, \omega_0 \omega) \cdot \omega_0^2
\]

Velocity Sensing Circuits
Velocity-to-Voltage Conversion

To convert velocity to a voltage, use a resistive load.

\[V_o = \frac{V_i}{R} \]

Since this structure has completely symmetrical I/O ports:

\[\frac{V_o}{V_i} = \frac{1}{R} \]

Work @ resonance: (to simplify the analysis)

\[\frac{V_o}{V_i} = \frac{R_o}{R_o + R_c} \]

Then, generator is off resonance:

\[\frac{V_o}{V_i} = \frac{R_o}{R_o + R_c + \sigma(\omega, \theta)} \]

where \(\sigma(\omega, \theta) = \frac{R_o}{R_o + R_c} \)

Problems With Purely Resistive Sensing

Now we get: (approximately)

\[\frac{V_o}{V_i} \approx \frac{R_o}{R_o + \frac{1}{\frac{d}{d\theta}}} \]

\[\omega_p^2 = \frac{1}{(R_o + R_c)C_p} \]

Depend on both \(R_o + R_c \).

Impact depends on \(\omega_p \) relative to \(\omega_0 \).

Includes \(C_o \), line \(C \), bond pad \(C \), and next stage \(C \).
Problems With Purely Resistive Sensing

In general, the sensor output must be connected to the inputs of further signal conditioning circuits → input R_i of these circuits can load R_D

These change w/ hook-up → not good.

Problem: need a sensing circuit that is immune to parasitics or loading.

Soln: use op amps.

The TransR Amplifier Advantage

* The virtual ground provided by the ideal op amp eliminates the parasitic capacitance C_p and R_i

The zero output resistance of the (ideal) op amp can drive virtually anything

Virtual Ground ⇒ V_o voltage across C_p

C_p effectively isn't there!

$N_0 = \frac{R_2}{R_x} \Theta(s) t^s$
Position Sensing Circuits

Problems With Pure-C Position Sensing

* To sense position (i.e., displacement), use a capacitive load

\[
\begin{align*}
\Delta V_{o}(s) &= \frac{C_{0}C_{D}}{1+\frac{C_{0}C_{D}}{C_{P}}} \Delta \phi(s) \\
\text{Integration yields} & \quad \text{displacement.} \\
\text{To maximize gain, minimize} & \quad C_{0}. \\
\Rightarrow \text{Problem: parasitic capacitance} & \quad C_{0} \rightarrow C_{b} + C_{P} + C_{Pb} \\
\Rightarrow \text{DC Gain:} & \quad \frac{C_{x}}{C_{0}(C_{b} + C_{P} + C_{Pb})} \\
\text{Remedy:} & \quad \text{Suppress} C_{P} \text{ via use of op amps.}
\end{align*}
\]
The Op Amp Integrator Advantage

- The virtual ground provided by the ideal op amp eliminates the parasitic capacitance C_p

\[\tau = \frac{1}{sC_2} \]

(for biasing)

Differential Position Sensing
Differential Position Sensing

Example: ADXL-50

Tethers with fixed ends

Fixed Electrodes

\[V_p \]

\[C_1 \]

\[C_2 \]

\[-V_p \]

\[V_0 \]

\[\frac{C_1}{C_1+C_2} \]

\[\frac{C_2}{C_1+C_2} \]

\[\frac{C_p}{C_1+C_2+C_p} \]

\[V_0 = -V_p + \left(\frac{C_1}{C_1+C_2} \right) \frac{2(V_p)}{C_1+C_2} \]

\[V_0 = \frac{C_1-C_2}{C_1+C_2+C_p} V_p \]

\[V_0 = \frac{C_1-C_2}{C_1+C_2+C_p} V_p \]

\[\text{No voltage across } C_p \]

\[\text{It's effectively not there!} \]

Buffer-Bootstrapped Position Sensing

Includes capacitance from interconnects, bond pads, and \(C_{gs} \) of the op amp

Unity Gain Buffer

\[V_0 \]

\[C_{gd} \]

\[C_p \]

\[C_{gd} = \text{gate-to-drain capacitance of the input MOS transistor} \]

Ground Plane

\[\times \]

\[+V_p \]

\[-V_p \]

\[\text{Bootstrap the ground lines around the interconnect and bond pads} \]

\[\text{No voltage across } C_p \]

\[\text{It's effectively not there!} \]
Effect of Finite Op Amp Gain

- Total ADXL-50 Sense C ~ 100fF

\[V_P \]

Unity Gain Buffer

\[C_P \]

\[C_{gd} \]

\[V_0 \]

\[N_0 = A_0(N_c - N_i) \times A_0(N_i - N_c) \rightarrow N_0 (1 + A_0) \times A_0 N_i \rightarrow A_0 N_i = \frac{N_0 N_i}{1 + A_0} \]

Get \[z_{in} = \frac{N_i}{z_i} \]

\[A_0 (N_i - N_c) sC_P \]

\[= N_c \left(1 - \frac{A_0}{1 + A_0} \right) sC_P \]

\[N_c \frac{sC_P}{1 + A_0} \]

\[C_{eff} = \frac{sC_P}{1 + A_0} \]

Ex: \(A_0 = 10 \), \(C_P = 2pF \)

\[\Rightarrow C_{eff} = \frac{2pF}{10} = 0.2pF \]

Not negligibly compared with ADXL-50 Ceff ~ 100 fF!

Integrator-Based Diff. Position Sensing

\[V_P \]

\[i_0 \]

\[R_2 \]

\[C_F \]

\[R_0 \]

\[V_0 \]

\[+ \]

\[- \]

\[0V \]

Can drive next stage \(R_2 \) without interfering to transfer function!

\[\frac{V_0}{V_P} = -\frac{C_2}{C_F} \Rightarrow A \text{ seemingly perfect differential sensor/amp output} \ldots \text{but only when the op amp is ideal} \ldots \]