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* Reading: Senturia, Chpt. 9

* Lecture Topics:
% Bending of beams
Y Cantilever beam under small deflections
% Combining cantilevers in series and parallel
% Folded suspensions
% Design implications of residual stress and stress gradients
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Bending of Beams

i Beams: The Springs of Most MEMS

" UGBerkeley
* Springs and suspensions very common in MEMS
% Coils are popular in the macro-world: but not easy to
make in the micro-world

% Beams: simpler to fabricate and analyze; become
“stronger” on the micro-scale —» use beams for MEMS
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i Bending a Cantilever Beam

" UCBerkeley

Clamped end %

condition:

At x=0:
N

dy/dx = 0 !
I

Free end condition

F

A 4

=4 X______
-+ -

v
X

* Objective: Find relation between tip deflection y(x=L_) and
applied load F

* Assumptions:
1. Tip deflection is small compared with beam length
2. Plane sections (normal to beam's axis) remain plane and
normal during bending, i.e., “pure bending”
3. Shear stresses are negligible

‘UCBerkeley

Moment de 45 F, hee
le FL

For e.:lv}h'bﬂbm: "L,( e M3 = F(cx)
V’Xt’ F

(Senkuria gires eqpessions)

Copyright © 2016 Regents of the University of California

CTN 2/25/16



EE 247B/ME 218: Introduction to MEMS Design

Module 8: Microstructural Elements

Portions abave fhe

Small section of
a beam bent in <
response to a

tranverse load
Applied

Moment

defiral by o9

5 r > Tension
newid axfs go (rfo < \

\.

Consider a segment bounded b\/ o dashed lines

&  Sign Conventions for Moments & Shear Forces
" UCBerkeley
Positive Negative
- (+) moment leads to
Z 4 " / N\ deformation with a (+)
T { I | radius of curvature
= N (i.e., upwards)
Il U
Lesis A~ (-) moment leads to
o M~ A ‘/ ()\’ N\, deformation with a (-)
i \ J ( | R=()} .} radius of curvature
\ { R = (‘”)}5 "} L“ \'%,-"’ﬁ“‘-! E'L (i.e., downwards)
L
/_\
A A (+) shear forces
{ ¢ ¢ 1 produce clockwise
rotation
Al T | | /’I A (-) shear forces
| | : | ] produce counter-
l ;‘ﬁ_‘_—! ‘L + _(._————-J ! clockwise rotation
5 Beam Segment in Pure Bending
" UG;Berkeley

Neutral Axis = leng#,

Nete: (+) dlirection

! Compression
of 2 (s downwand p

2
Fortions beowy Ho newtnd

axis 9o jnto Cobpression

At2=o: (i, at He neutrlaxls) : seqment length= dc=Rel® (1)
Atamyz:  Segmed lemgth= olL < (R-2)dlO @

Comblning €) $@): L= Ay~ 246 = ot - %4,4
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UCBetkeley
Thus, Ho oxist shuin @ 2 - JL
dx = Ovigind (MW)F
J‘egmen‘} lelghr

ﬁ Beam Segment in Pure Bending (cont.)

47< 2 2
®r = é«"Ei

Small section of
a beam bent in < M, ﬁ
response to a
transverse load

() vadis
L of curvedue

To get #e bending mpmon:

=> integrute Fhess Mrmgl\ the thideneyy of 'HQW

“hfp 4 - <~
Thus, shrain varies hinearky abwj bezm f2 ':
thidkress, and has g maximum velue ~Sxmax SN
e—x max S h.--—-/z . é«:”‘ﬂf é?‘
A ._bhlz
Of course, Here s a vz
Correspanding ox:'ol stegs: ~hty Gy = (1) = fonsion
04( 'x % = -xz d;c
N 03 () —> Compression, n e ,fm
\l(’J
This gradient in ghegs Hor genemhr a w*)
bending momedt—.."
» Internal Bending Moment
UCBerkeley
Moment arsund e Tension .
s, poiat T Neutral Axis

Compression
Effe chively, 2 :distune £/
He moment referenc pt.

M= j-l'/z [(Wd-z)d:x]-z-qh’z Ew=?

h/y

([—\//
Wk =12 Homent of Inecfia

=k P |H-- [,ZWLF)—E—

“F‘Df(ﬂ {0_ :-,?EE'.
(—n
R~ EL

Nete: () vadius of curvature

— () inferna 6%&5 moment!
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a Differential Beam Bending Equation
UCBetkeley
w(x
o

S~ Neutral axis of a
bent cantilever beam

Wwrite sut 3eowe{.-.'c relationships: {S"“w A’b'el

.
cos® e iﬁ—:— — ds: cixe — dsxdx
tan0 s slope of beame@ . dw
N N “ ()
s L.
ds - 46 — -h—:%? > R e (2)
Insert m@: difdw__hn Differenhd Equation fon
hserting (0 in (2 R T | Small gl Bending of Boams

=
tr.—a
=
-]

«
t

tkeley;

Example: Cantilever Beam w/ a
Concentrated Load
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~ Cantilever Beam w/ a Concentrated Load

" UCBerkeley
Free end condition F&e Foint
7 1 \ boed
Clamped end / M L1 \
condition:

ondition:— 5 — = = = F-——— I h
=, W T

dw/dx = 0 1
I

Infernal Moment @ Po-ﬂ"hon'x: M-- F(L""') d
Tus:  dw  F L wf Clampad End R.C's: W(¥*0)< 0, a%('xw)‘o
real- A Free End B.C'5: nove
Solve'bé,d' expression faw :
= use Laaco; or ure biol Solufim wr = A2 Bx £ C2*402E, Hon apphy B.C's

. FL X Deflection @ x e 4o a point [oad
d 2€l ,xz(‘ 3L) [Faﬂ,);eo( at x:L

& Cantilever Beam w/ a Concentrated Load
" UG;Berkeley
Free end condition Fe Point

7 . fou
Clamped end M L1 v
conditioni~——_ 77254 ﬂ"lf ....... ] I h
At x=0: / T
w=0 / x L
dw/dx = 0 A I R
T

] >

Maximum defoction @ %=1 : Note ot in genend,
[ . [ 3EL Shifres 15 a Funcfion
(»l’m- (ZEI)F - F'(-—Ls‘)w(‘)ﬁL) = k@ydhm’hm'x.

Where k.= 3EL 2 hiffrecs @ location 2L
L2 ——— TS L"'IOD/um, W Zuam, h* Zum
pobysiliéon — E=1506%

[p"_zwzﬁl:; k< %Ewij < 3
L k.- ‘qusw)(z/‘)(,%";;) = 0.6 N/om
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% Maximum Stress in a Bent Cantilever

UG;Berkeley
From befce, tha wdius 6f curvarture |s Glven by
L2y A E(12) = mpdrized wdere R0
© occun af #o suppod , whew 720

Stretor Lol L h—
23 =

>
Shain is maximived : \SITP@ o
CDM'{-DF:wfnw——-H?n.rﬂe c 2 Bl hR
@ M bottan surfaw = compressive mx’ " ETZ R ZEL
KRz .
[1- 45w }= s B I3, Em.’ E
}F o Vl‘_‘;i} Maxirmuim Shess in o\)
Rent Cantilever

= §)j -
@
=)
G

«
¢

s

Stress Gradients in Cantilevers
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‘- Vertical Stress Gradients
L B .
* Variation of residual stress in the direction of film growth

* Can warp released structures in z-direction

temperature then

Before release

Average
stress

Compression ¥ z

Stress before release

Stress gradient

CmeER (R

Stress Gradients in Cantilevers
BEEERIEEEEE e
Below: surface micromachined cantilever deposited at a high

cooled — assume compressive stress

s P

After release, ;
but before bending .. After bending

Tension 1> 4 Tension

Ox

Compression Compression

H/2 HI2 After which,
% ¥z stress is
Stress after release, relieved

After bending

But stress
gradient remains
— induces moment
that bends beam

but before bending

Once released, beam
length increases slightly
to relieve average stress

Copyright © 2016 Regents of the
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5 Stress Gradients in Cantilevers (cont)

UCBetkeley
Find Ho vadius of curvahae.
Prse o relesae, oxiad stres 2 07 O_o"(go%_‘)%
The mk'md wmewl' .
d.? in Z—ZJ;Q
2B H’
—h/ 30 -——0‘ D_q 3(:)) -é—a:wn%yy
Thus, Ho codivs Cu'fVa-[mem . v o
LMy o ET _ EGWH) igh
kBT & } T 2
Bmxlaf Shess [-I' f;Wh
Gadient " E_ i |Rodiw ef (uridhue
= R ZTAT| | for a Camblever
‘ Wl Shess Endient

0= %_E_ﬂ. = R can be wed
-») R b defermine sheary 3mlr'en+

/‘

i Measurement of Stress Gradient
U .ﬂ@!ﬁ\_’_
* Use cantilever beams
Y Strain gradient (I' = slope of strain-thickness curve)
causes beams to deflect up or down
% Assuming linear strain gradient T', z = TL?/2

. compressive

B cnsic [P. Krulevitch Ph.D.]

Sp— p—
p— —
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Folded-Flexure Suspensions

i Folded-Beam Suspension
" UCBerkeley
* Use of folded-beam suspension brings many benefits

Y Stress relief: folding truss is free to move in y-

to relieve stress

2
'"P‘E)‘ Comb Vibrating Shutile Xo,/
rive Mass

Anchors

LA

Folded Beam Rigid Truss
Suspension

Output Sense
Electrode

Comb-Driven Folded Beam Actuator

direction, so beams can expand and contract more readily

b High y-axis to x-axis stiffness ratio Folding Truss

CTN 2/25/16
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5 Beam End Conditions

Ce— w=10

|
FIXED or CLAMPED

IABLE 4.1
Types of ¢ ly used support conditions for beams and frames
Displacement Force
boundary boundary
Type of support cond diti
£ Non All, as specified
— = X
FREE = - . AN L =
4
P.]I | u=0 Momen ified
A W 0
PINNED
]
"z.-_'!.. | u=10 I'ransverse force and moment
* ROLLER are specificd
vertical)
)
o v
[ — ] Horizontal lorce and bending
il moment are specified
ROLLER
{horizontal)
3 . .
- Yo 0 None specificd [From Reddy, Finite

Element Method]

(a) cantilever beam,
concentrated load.

{d) cantilever beam,
distributed load.

{b) guided-end beam,
concentrated load.

(o) guided-end beam,
distributed load.

(c) clamped-clamped beam,

concentrated load. distributed load.

s Common Loading & Boundary Conditions

,Gi.@rk‘ﬂrﬂu_

* Displacement equations derived for various beams with
concentrated load F or distributed load f

* Gary Fedder Ph.D. Thesis, EECS, UC Berkeley, 1994

(f) clamped-clamped beam,

cantilever | guided-end | fixed-fixed
s=fe | e=fs | ==&k
y=4tkls | v=5k |v=4nk

o
=8
=
b
o
(=]

- 1
- gz e
2 Bw ke £ =

(b) Distributed load.

Copyright © 2016 Regents of the University of California
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B Series Combinations of Springs
T UGBerkeley
* For springs in series w/ one load
% Deflections add
% Spring constants combine like “resistors in parallel”

Y(L) = F/k = 2 y(L,) = 2 (F/k.) = F(1/k, + 1/k.)
—

Vi
Compliances effectively add:

1/k = 1/k_+ 1/k | —

R
“UCBerkeley

Parallel Combinations of Springs

=

* For springs in parallel w/ one load
% Load is shared between the two springs
% Spring constant is the sum of the individual spring

constants
] y(L)
Z =
Z ; (pg
T z -
Y b FRIT

Y(L) = F/k = F /k, = F,/k, = (F/2) (1/k,)

\ :k=2k

S
>

Copyright © 2016 Regents of the University of California
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i Folded-Flexure Suspension Variants
]
* Below: just a subset of the different versions
* All can be analyzed in a similar fashion

[ o e TR PR
(a) inner fold, {b) Inner fold, (c) Outer fold, (d) Outer fold,
continuous truss discontinuous truss continuous truss discontinuous truss

[From Michael Judy, Ph.D. Thesis, EECS, UC Berkeley, 1994]

B

This equivalent to
—_ two cantilevers of
% length L =L/2

Composite cantilever
free ends attach here

Half of F

1 absorbed in -
other half 4 sets of these pairs, each of

(symmetrical)  which gets % of the total force F

Copyright © 2016 Regents of the University of California 14
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=  Constituent Cantilever Spring Constant

T 1L B .

* From our previous analysis:

FL. , y | FEJy’
x(y)=tele 2l Y | _ TV (3
1’ ) 2EIzy( 3Lc] 6EIZ( =)

* From which the spring constant is:

. P F, _ 3EI,
c © x(L) L
* Inserting L, = L/2
B 3EI . 24E1 Z
ey} r
5 Overall Spring Constant
UG Betke ey .
. Y .?r',ﬂ':g * Four pairs of .clamped-guided.beam.s
) % In each pair, beams bend in series

L (Assume trusses are inflexible)
* Force is shared by each pair — F,;. = F/4

Leg — Displeement of fwe legs add tb::ehm
& Hhus, springs are in Senes:
F 3 F, ir F {
L a: fpae _ Fpa =,)(——+4—)
4)\k k
S l .ﬁﬁ e‘_:/ kPa"‘ (klegu klea) ( '% I%

of Ralr Erom befoe: klee" klik, = E:—
& | pair

£.F
; % (S8 % ks
= k-(-d'= kc: —Z%J\

Copyright © 2016 Regents of the University of California 15
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,;',

¥ Folded-Beam Stiffness Ratios
" UG;Berkeley

Folded-beam 1’ * In the x-direction:
Z X

suspension 24EI
,‘ — kx= 3z
L
* In the z-direction:
L % Same flexure and boundary
| conditions
24EI
k,= 5
Shuttle
- *In the y-direction:
[See Senturia, §9.2] ky = M
L
Folding
T . |k 2 Much
e Thus: [Ty _ 4 L stiffer in
Anchor k. W ) | y-direction!

el

. Micromehanical Filter [K. Wang, Univ. of Michigcm]-

Copyright © 2016 Regents of the University of California 16
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.1, Folded-Beam Suspensions Permeate MEMS

" UCBerkeley

* Below: Micro-Oven Controlled Folded-Beam Resonator

= s
Temperature ‘ :
r}\mg Resistor

\ R

. \
Substrate \X
\ 'Edge
, _L\
\ ‘Micro-Platform

3 -

U BEELEETE R

Stressed Folded-Flexures

Copyright © 2016 Regents of the University of California 17
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A

w Clamped-6Guided Beam Under Axial Load
]

* Important case for MEMS suspensions, since the thin films
comprising them are often under residual stress

* Consider small deflection case: y(x) « L

Z x
(? i e . L g
Y —
S 4
Y w
F
Governing differential equation: (Euler Beam Equation)
El =85 5 =Fo(x—1L)
ax ax
Axial Load  Unit impulse @ x=L

Copyright ©

The Euler Beam Equation

)
“UCBerkeley

Upword pressyre

Thin besm J b counderact +ha
y\dmwéd N

ne
N T
Axial Stress R

* Axial stresses produce no net horizontal force: but as soon

as the beam is bent, there is a net downward force
% For equilibrium, must postulate some kind of upward load

Downutiad Vedtcdd Foe = 26,WH P, (8) <P 10

Upwirdl fore due f P,: o
’ KQ% Fu=f:(P°sln9)w(gd9)
" S PRcosB[T < 2RWF,

CTN 2/25/16

on the beam to counteract the axial stress-derived force
% For ease of analysis, assume the beam is bent to angle =

2016 Regents of the University of California
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A \

o The Euler Beam Equation
fll@ﬂ@n&fﬂﬁu—“.
(Eguitbduml= 2RWE = 265 WH — s 2=
beam'OaJ Zw
(9 e ™40, & )]-—*’ e MG
&mmo“‘ﬂﬂmﬂ?ﬁ' Note: Use of the full

7 wafion: bend angle of = to
uxm\yfivwd’f(aej bemj,;'j "6 eqe__ load J establish conditions for

load balance; but this~]

;_Ei L FT ot ek returns us to case of
small displacements
F1 dlw . { excomal ocd and small angles
! 1 ﬂ ~ C(tUI'V- load accowvﬂrj fu He axtad
Shess corributio o Ho berdling Fiftnecs
. d? Afwr Jow
o* O WHZ S 1% - (T WH) G Euler Beam Equah
[1 J:JJPEM( )M“l (ur 7uorhon]
{ fensim in Fabeom c S€— a fore

~—

A

% Clamped-Guided Beam Under Axial Load
] T

* Important case for MEMS suspensions, since the thin films
comprising them are often under residual stress

* Consider small deflection case: y(x) « L
% x
7
Y —
S

7.

N

L

S |«

Governing differential equation: (Euler Beam Equation)
dy d L
“dx?

ET.

= F§(x—1)
H_/

Axial Load  Unit impulse @ x=L

Copyright © 2016 Regents of the University of California 19
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A

T 1L B .

Solving the ODE

* Can solve the ODE using standard methods
% Senturia, pp. 232-235: solves ODE for case of point load

on a clamped-clamped beam (which defines B.C.'s)

% For solution to the clamped-guided case: see S.
Timoshenko, Strength of Materials II: Advanced Theory

and Problems, McGraw-Hill, New York, 3™ Ed., 1955
* Result from Timoshenko:

k—i —

S > 0 (tension)

)]
M
4]

-!- -\',-_-'-;!!!

o —pL+2tan(pl/2) v(x=1L)

=~

p:S: j"‘
i 3 -
wnere =
P ErL
5 Design Implications
- UGBetkeley

* Straight flexures

% Large tensile S means flexure behaves like a tensioned
wire (for which k-! = L/S)

% Large compressive S can lead to buckling (k-! — <)

OF poke$ Shaln is €, Hon

Inner beams

* Folded flexures — ’

& Residual stress A — S l"f“% QS‘M" by g7 €els

only partially outer () This thon applier 4 load To 4o

released 47 | bq{:i’. ::w AL 4
% Length from truss 9 —

to shuttle's

centerline differs _ Ly Compression

by Ls for inner Compressive
i outer legs ™ e

Betm Straih®

M. As. . Ls
Seor it G ’ Alg
v S
P e

Copyright © 2016 Regents of the University of California
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5 Effect on Spring Constant
T 1L B .
* Residual compression on outer legs with same magnitude of
tension on inner legs: St ih e pokySy’

L L
Beam Strain: &, =&, (Z—sj : Stress Force: S =*F¢, (Tsth

Shain in e b@w) f*{kwih .f,y‘, Shodler = &1, }
(’ Spring constapt”becomes: el Tor,
AL Eyls Spansion
éhlz.rg L —1 -1\ QTP’JPJG lbﬁﬁ‘
k= 4(kcon7 + kfen ) dh")qﬂ ’mw

1 of Ko
€€ Ls. k:4|:—pL+2ta;1(pL/2)+ pL—2tan;1(pL/2)] ‘{'
J2h P

* Remedies:
% Reduce the shoulder width L, to minimize stress in legs
% Compliance in the truss lowers the axial compression and
tension and reduces its effect on the spring constant

Copyright © 2016 Regents of the University of California
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