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& Lecture Outline
T 1B 1 .

* Reading: Senturia, Chpt. 10

* Lecture Topics:
% Energy Methods
* Virtual Work
* Energy Formulations
* Tapered Beam Example
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Energy Methods

o More General Geometries
UGIEHEE e el
* Euler-Bernoulli beam theory works well for simple geometries
* But how can we handle more complicated ones?
* Example: tapered cantilever beam
* Objective: Find an expression for displacement as a function
of location x under a point load F applied at the tip of the

free end of a cantilever with tapered width W(x)
Top view of cantilever's W(x)
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w  Solution: Use Principle of Virtual Work
T 1) B .
* In an energy-conserving system (i.e., elastic materials), the
energy stored in a body due to the quasi-static (i.e., slow)
action of surface and body forces is equal to the work done
by these forces ..

* Implication: if we can formulate stored energy as a function
of the deformation of a mechanical object, then we can
determine how an object responds to a force by determining
the shape the object must take in order to minimize the
difference U between the stored energy and the work done
by the forces:

U = Stored Energy - Work Done

* Key idea: we don't have to reach U = O to produce a very
useful, approximate analytical result for load-deflection

More Visual Description ..

" UGBetkeley
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/ < Lc > F / i;:’
Zn 1 o

Prpy e
7 I @ Bean respords by bending
A l//r_-(_f @is force has dme woock:
2\——%@&) W Fyed
‘ J

® Shain 3anemla:( — This means 4he boam has received

an influx a’f.rlwdenery
O ten: Wan;"w‘e determing|
U= Shred Fhergy ~ Work DM\Q?O by its deformed shae

(When we chonse e right shape! (This s hawr we gt #la beam's rostemse 4o €1)

Copyright © 2016 Regents of the University of California



EE 247B/ME 218: Introduction to MEMS Design

Module 9: Enerqgy Methods

CTN 3/10/16

5 Fundamentals: Energy Density
] [ N
* Strain energy density: [J/m3] M‘”’[f g“m /»col,?g Li'ﬂ:vm
% To find work done in straining material®y o "
g,_/m’&u dolaln@ position (%,9,3) erogy M4 Caperc

1""“5’; o\ W= Ovdxdex x-axis normal stress term
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* Total strain energy [J]:

% Integrate over all strains (normal and shear)

W= J‘H[%E(e +e +e)] )+ % G(yxy2 Y+ )}W

Bending Energy Density
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y’ Neutral Axis

y(x) = transverse displacement

x of neutral axis
ax Yl_)

* First, find the bending energy dW,_,, in an infinitesimal
length dx: W= wid#,

T~

MWiend = Wekx f_:;: TEely)dy
g, e b ctry P =
ey ] - B
Wi tere ()
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»ﬁﬁ Energy Due to Axial Load

CBetkeley

-

* Strain due to axial load S contributes an energy dW, ...,
in length dx, since lengthening of the different element dx

(to ds) results in a strain &, /B;qu Theorem
ds:[—(dx)lt-(d})z]v‘ s [14- (%;JZ]Z = d;(li— —L(%Z]
d;{’;lx —‘-(53)2 Amﬂ Stwain Evergy

[ vt £5(4fi}= fma T ()

Shear Strain Energy
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Shear Modulus

* See W.C. Albert, "Vibrating Quartz Crystal Beam
Accelerometer,” Proc. ISA Int. Instrumentation Symp., May
1982, pp. 33-44
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* Basic Procedure:

loads

order to minimize:

Sum strain energues

* See Senturia, pg. 244, for a general

s Applying the Principle of Virtual Work

% Guess the form of the beam deflection under the applied

% Vary the parameters in the beam deflection function in

Assumes
pom'l' load

U= ZW ZFu

Dusplacemem‘
at point load

% Find minima by simply setting derivatives to zero

expression with

distrubuted surface loads and body forces

" UGBerkeley

Top view of cantilever's W(x)

50% taper
x=L

X

. . . T y(x)=
Start by guessing the solution ———”
% It should satisfy the boundary conditions
% The strain energy integrals shouldn't be too tedious
* This might not matter much these days, though, since
one could just use matlab or mathematica

& Example: Tapered Cantilever Beam

* Objective: Find an expression for displacement as a function
of location x under a point load F applied at the tip of the
free end of a cantilever with tapered width W(x)

.
T — T (1
w4 = W) = (=)

‘ Adjustable

par'ameter's :

l_>x minimize U
' /N

=, X" +¢,x°
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1(0=

W (x)=W(l- 7)

o Strain Energy And Work By F

U =mgrm’ — I J;(Lc )
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(Using our guess)
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Tip Deflection

T

correctly)

* Proceed:

U—EWN
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_ b sfei X s N 72 N
24EWh _(l)(l —ZL)LAC2 +6c,x)dx—F(c,L +cL )
5 Find ¢, and ¢; That Minimize U
T 1 B 1 .

* Minimize U — basically, find the c, and c; that brings U
closest to zero (which is what it would be if we had guessed

* The ¢, and c; that minimize U are the ones for which the
partial derivatives of U with respective to them are zero:

o _, oU

—= —=0
dc, de,

% First, evaluate the integral to get an expression for U:

-5cq2 3 CoC y G, ]
L+ L+,
: 3 :

6

2

c

J'—F(chf +c;L63)
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ﬂ Minimize U (cont)
rkele_—.
E aluate the derivatives and set to zero:

3 3
SU 0= (Eth c3—FJLj+(EVZh CZJLC
C
3
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* Solve the simultaneous equations to get ¢, and cj:

(84 FL, L [24
213 JEwn? 13

F
EwWn’

And the solution:

beam (using Euler theory):

EWh’

& The Virtual Work-Derived Solution
T 1 B .

(x)= 241 ! —x |7
Y= e |2 )

* Solve for tip deflection and obtain the spring constant:

24F 13EWh’
)= [13EW%I JL k= Eipd)= [6OL J

* Compare with previous solution for constant-width cantilever

tapered-width case

v(L,) z( 4L ]Lﬂ > 13% smaller than
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& Comparison With Finite Element Simulation

QI ET e
* Below: ANSYS finite element model with

L = 500 um W, = 20 pm E = 170 GPa
h=2pm W, =10 pum

* Result: (from static
analysis)
Yk = 0.471 pN/m
* This matches the
result from energy
minimization to 3
significant figures

5 Need a Better Approximation?
T 1) B 1 .
* Add more terms to the polynomial

* Add other strain energy terms:
% Shear: more significant as the beam gets shorter
% Axial: more significant as deflections become larger

* Both of the above remedies make the math more complex,
so encourage the use of math software, such as
Mathematica, Matlab, or Maple

* Finite element analysis is really just energy minimization

* If this is the case, then why ever use energy minimization
analytically (i.e., by hand)?
% Analytical expressions, even approximate ones, give
insight into parameter dependencies that FEA cannot
% Can compare the importance of different terms
% Should use in tandem with FEA for design
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