<u>EE C247B/ME C218</u>: Introduction to MEMS Design Lecture 12w: Beam Bending

Lecture 12: Beam Bending I

- · Announcements:
- · HW#2 online and due Tuesday, 2/28, at 10 a.m.
- · Module 8 on "Microstructural Elements" online
- · Graded HW#1 handed back
- -----
- · Reading: Senturia, Chpt. 8
- · Lecture Topics:
 - ♦ Stress, strain, etc., for isotropic materials
 - Thin films: thermal stress, residual stress, and stress gradients
 - ⋄ Internal dissipation
 - MEMS material properties and performance metrics
- -----
- · Reading: Senturia, Chpt. 9
- · Lecture Topics:
 - ♦ Bending of beams
 - Scantilever beam under small deflections
 - ♥ Combining cantilevers in series and parallel
 - \$ Folded suspensions
 - Design implications of residual stress and stress gradients
- •
- · <u>Last Time</u>:
- · Nearly finished with Material in Module 7
- · Then, start a new topic: Bending of Beams

Problem: Bending a Cantilever Beam

- * Objective: Find relation between tip deflection $y(x=L_c)$ and applied load F
- Assumptions:
 - 1. Tip deflection is small compared with beam length
 - 2. Plane sections (normal to beam's axis) remain plane and normal during bending, i.e., "pure bending"
 - 3. Shear stresses are negligible

Beam Segment in Pure Bending]

I consider the segment bounded by the daded lines defing do

At 2=0: neutral axis - segment length=bx=RdO (1)

At any 2: segment length=dL=(R-2)dO (2)

Combine (1) = (2): dL=dx-2dO=dx-2dx

Thus, the axial strain @ 2:

Ex=\frac{dL-dx}{dx}=-\frac{2}{R} \rightarrow \end{Ex=-\frac{2}{R}}

Thus, the strain varies linearly along the beam thickness:

EE C247B/ME C218: Introduction to MEMS Design Lecture 12w: Beam Bending

