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Outline

• Reading: Senturia, Chpt. 8

• Lecture Topics:
Stress, strain, etc., for isotropic materials
Thin films: thermal stress, residual stress, and stress 

gradients
Internal dissipation
MEMS material properties and performance metrics
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Vertical Stress Gradients

• Variation of residual stress in the direction of film growth

• Can warp released structures in z-direction
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Elasticity
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Normal Stress (1D)

If the force acts 
normal to a 

surface, then the 
stress is called a 

normal stressnormal stress
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Strain (1D)
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The Poisson Ratio
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Shear Stress & Strain (1D)
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2D and 3D Considerations

• Important assumption: the 
differential volume element 
is in static equilibrium  no 
net forces or torques (i.e., 
rotational movements)
Every  must have an 

equal  in the opposite 
direction on the other 
side of the element

For no net torque, the 
shear forces on 
different faces must 
also be matched as 
follows:

xy = yx xz = zx yz = zy

Stresses acting on a 
differential volume element
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2D Strain

• In general, motion consists of
rigid-body displacement (motion of the center of mass)
rigid-body rotation (rotation about the center of mass)
Deformation relative to displacement and rotation

•Must work with displacement vectors

• Differential definition

of axial strain:

Area element 
experiences both 
displacement and 

deformation
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2D Shear Strain
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Volume Change for a Uniaxial Stress

Stresses 
acting on a 
differential 

volume 
element
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Isotropic Elasticity in 3D

• Isotropic = same in all directions

• The complete stress-strain relations for an isotropic elastic 
solid in 3D: (i.e., a generalized Hooke’s Law)
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Basically, add in off-axis strains from 
normal stresses in other directions
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Important Case: Plane Stress

• Common case: very thin film coating a thin, relatively rigid 
substrate (e.g., a silicon wafer)

• At regions more than 3 thicknesses from edges, the top 
surface is stress-free  z = 0

• Get two components of in-plane stress:

)]0()[1(  xyy E 
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Important Case: Plane Stress (cont.)

• Symmetry in the xy-plane  x = y = 

• Thus, the in-plane strain components are: x = y = 

where

and where
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Biaxial Modulus =
∆
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Edge Region of a Tensile (>0) Film

Net non-zero in-
plane force (that 
we just analyzed)

At free edge, 
in-plane force 
must be zero

There’s no Poisson 
contraction, so 

the film is slightly 
thicker, here

Film must 
be bent 

back, here

Discontinuity of stress 
at the attached corner 
 stress concentration

Peel forces that 
can peel the film 
off the surface
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Linear Thermal Expansion

• As temperature increases, most solids expand in volume

• Definition: linear thermal expansion coefficient

Remarks:

• T values tend to be in the 10-6 to 10-7 range

• Can capture the 10-6 by using dimensions of strain/K, 
where 10-6 K-1 = 1 strain/K

• In 3D, get volume thermal

expansion coefficient

• For moderate temperature excursions, T can be treated as 
a constant of the material, but in actuality, it is a function 
of temperature

dT

d x
T


  [Kelvin-1]

Linear thermal 
expansion coefficient =

∆

T
V

V
T
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T As a Function of Temperature

• Cubic symmetry implies that  is independent of direction

[Madou, Fundamentals 
of Microfabrication, 
CRC Press, 1998]
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Thin-Film Thermal Stress

• Assume film is deposited stress-free at a temperature Tr, 
then the whole thing is cooled to room temperature Tr

• Substrate much thicker than thin film  substrate dictates 
the amount of contraction for both it and the thin film

Silicon Substrate (Ts = 2.8 x 10-6 K-1)

Thin Film (Tf)

Substrate 
much thicker 
than thin film
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Linear Thermal Expansion


