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& Vertical Stress Gradients &
1 UGB ). i
* Variation of residual stress in the direction of film growth
* Can warp released structures in z-direction
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* Important assumption: the
differential volume element
is in static equilibrium — no
net forces or torques (i.e.,
rotational movements)
% Every ¢ must have an

direction on the other

side of the element o
% For no net torque, the “‘A/’

shear forces on

different faces must

also be matched as

follows:

n
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T Txz

Txy = Tyx

2D and 3D Considerations
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Stresses acting on a

2D Shear Strain
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2D Strain
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In general, motion consists of
t%>r'igid body displacement (motion of the center of mass)

% rigid-body rotation (rotation about the center of mass)
% Deformation relative to displacemen'r and rotation
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* Must work with displacement vectors
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& Isotropic Elasticity in 3D & Important Case: Plane Stress
T UG B I UGBetkeley
* Common case: very thin film coating a thin, relatively rigid

* Isotropic = same in all directions
substrate (e.g., a silicon wafer)

* The complete stress-strain relations for an isotropic elastic
solid in 3D: (i.e., a generalized Hooke's Law)

N Plane stress region Edge
1 [ ( )] 1 Thin fllm& l( g )}e‘ region
8x=E Oy—V\o,+0, }’xy=ETxy — —
1 1
8y=E[O-y_V(O-z+O-x)] }/yz=ETyz
* At regions more than 3 thicknesses from edges, the top

1 surface is stress-free - o, = 0
* Get two components of in-plane stress:

g, =(1/E)[o,—v(c,+0)]
g,=(/E)[c,-v(o,+0)]

8z=%[0'z—1/(0'x+0'y)] }/u:ETu

Basically, add in off-axis strains from
normal stresses in other directions

Important Case: Plane Stress (cont.) ﬁ;. Edge Region of a Tensile (c>0) Film

17 UG . I UGBerkeley

where

e, =1/E)[o-vo]=

o

_ o _
[E/A-v)] E
and where

Biaxial Modulus & E' = L
1-v

Shear stresses
S, )

v
F#0

<

* Symmetry in the xy-plane — o, =6, = o Net non-zero in- At free edge, Film must
* Thus, the in-plane strain components are: ¢, = g = € plane force (that in-plane force be bent
we just analyzed) must be zero back, here

™~

There's no Poisson
contraction, so
the film is slightly
thicker, here

Peel forces that
can peel the film
off the surface

Discontinuity of stress
at the attached corner
— stress concentration
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& Linear Thermal Expansion m,, ar As a Function of Temperature
e e
* As temperature increases, most solids expand in volume
* Definition: linear thermal expansion coefficient Y
Linear thermal A _ds, . . [ w
expansion coefficienf} =0r= dT [Kelvin-] y .
5| \ M

q

Remarks:
* ay values tend to be in the 10-¢ to 107 range

* Can capture the 10-¢ by using dimensions of pstrain/K,
where 106 K-! = 1 pstrain/K

* In 3D, get volume thermal AV
expansion coefficient =3a,;AT
V

Thermol expansion

; =5 [Madou, Fundamentals
~ of Microfabrication,
o o 690 %0 CRC Press, 1998]

T K

* For moderate temperature excursions, o can be treated as
a constant of the material, but in actuality, it is a function * Cubic symmetry implies that a is independent of direction
of temperature

wﬁ. Thin-Film Thermal Stress & Linear Thermal Expansion
e UL
Thin Film (o) But e film is. athudhal b Ho subdvele, s Yo actusl strain in He flim is
4o Samo as that in He cubstri .
Substrate € = ~04 AT
</much thicker Thus: fatiadel OLB

than thin film

TAGV'MJ ”l‘.\‘md’cl‘ Striin = é’(lhismd’cl‘ = (0(1-{ - OLT‘)AT
* Assume film is deposited stress-free at a temperature T, 6 Note 4hat Abis is biaxiad Shrain
vTe \s Diaxi i

then the whole thing is cooled to room temperature T, N .
* Substrate much thicker than thin film — substrate dictates it cun avly be developed by an in-plare bistial shecr

the amount of contraction for both it and the thin film o, [E\e
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