EE247B/ME218: Introduction to MEMS Design Lecture 17m: Resonance Frequency

EE247B/ME218: Introduction to MEMS Design Lecture 17m: Resonance Frequency

CTN 3/15/18

Free-Free Beam Frequency							
• Substitute $u = u_1 e^{j\omega t}$ into the wave equation:							
$\frac{\partial^4 u}{\partial x^4} = \left(\omega^2 \frac{\rho A}{EI}\right) u$							
• This is a 4 th order differential equation with solution:							
u(x) = A cosh kx + A sinh kx + Cos kx + D sin kx Gives the mode shape during resonance vibrition. • Boundary Conditions:							
At $x = 0$	At $x = \ell$						
$\frac{\partial^2 u}{\partial x^2} = 0$ $\frac{\partial^3 u}{\partial x^3} = 0$	$\frac{\partial^2 u}{\partial x^2} = 0$ $\frac{\partial^3 u}{\partial x^3} = 0$	M = 0 (Bending moment $\frac{\partial M}{\partial x} = 0$ (Shearing force))				
Dx ³ EE C245: Introduction to MEMS		ecM 10 C. Nguyen 11/4/08	28				

Copyright @2018 Regents of the University of California

EE247B/ME218: Introduction to MEMS Design Lecture 17m: Resonance Frequency

Mode Shape Expression							
 The mode shape expression can be obtained by using the fact that A=C and B=D into (2), yielding 							
$u_x = \mathscr{B}\left[\left(\frac{\mathscr{A}}{\mathscr{B}}\right)(\cosh kx + \cos kx) + (\sinh kx + \sin kx)\right]$							
 Get the amplitude ratio by expanding (3) [the matrix] and solving, which yields 							
$\frac{sl}{sl} = \frac{\sin kl - \sinh kl}{\cosh kl - \cos kl}$							
 Then just substitute the roots for each mode to get the expression for mode shape 							
	Fundamental Mode (n=1)						
		[Substitute	$k_1 \ell = 4.736$)]			
EE C245: Introduction to MEMS Design	LecM 10	C. Nguyen	11/4/08	31			

Copyright @2018 Regents of the University of California